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4 Introduction
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Figure 1.1: Basic operation of an atom interferometer. configured as a gravimeter. An atomic
cloud falls freely under gravity through an optical standing wave. which forms an “optical ruler”
with a precision proportional to its wavelength. Three pulses of the standing wave are applied.
separated equally in time and with appropriate durations to beamsplit, reflect, and recombine
the atomic wavepackets as shown in the space-time diagram on the right. The phase of the
laser at cach pulse is written onto the atomic state, encoding distance and time information
onto the atomic state.

Laser pulses are used to beamsplit. reflect. and recombine atomic wavepackets
using the absorption and emission of photons. This imparts momentum to the
atoms, as shown in figure 1.1. In this example three pulses are applied. sepa-
rated equally by time 7" and with appropriate durations (7/2 — 7 — 7/2) for a
beamsplitter. mirror, and beamsplitter operation respectively, producing an ana-
log Mach-Zchnder interferometer as shown to the right. At each pulse, the phase
of the laser is transferred to the atomic state, encoding information about the
atomic trajectories through the beam. In the configuration shown, the atomic
trajectory is (ideally) due only to gravity and the initial conditions. and thus in-
formation about the gravitational acceleration is encoded in the atomic state. At
the final beamsplitter of the interferometer, the phase information is converted
to the probability of finding atoms in one of the two motional states, and the
phase accumulated due to gravity (or equivalently any uniform acceleration) is:

P = Oy + 2(,')2 + O3 = "k,; X gT2 (ll)

where ¢, is the optical phase of the ith pulse. hk, is the momentum transferred
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16 The Two-Level Atom

E/h

Figure 2.1: Electronic energy level diagram for a two-level atom.

level diagram of this atom is given in figure 2.1. The atomic Hamiltonian can be

written as:

. T P hwo . ‘ P ﬂ 3 o ¢
fo= | [(T * T) ep)e.pl + (2= 5 )|.q.p><y.p|] &'p  (22)

Consider now the atom. with centre-of-mass position and momentum op-
crators r and p respectively, interacting with a classical electromagnetic wave
E(r..t) = Eycos(wt — k -y + ¢0), where Ey is maximum field amplitude vector,
k the wave vector, w the angular frequency. and ¢ an arbitrary phase. Naturally,
[, pl = th. The electric field at the atom’s position is then given by the operator
E(r.t). Assuming an clectric-dipole interaction, the Hamiltonian for this system

IS:

2m

3 r s hw
H = / [L(If-r))(f‘-l)l + |9.p){9.P|) + tT(lf"-P)("-Pl - |9.p){g.pP|)

hA - :
+ T"(Ir-n)(v-pl ~|g9.p){g.pl)| &*p + d - E(E, 1)

(2.3)

where d = er, is the electrie-dipole moment operator® and Ay = wy —w. as shown

in figure 2.1. We assume an atom with no permanent electric-dipole moment.*

*Here, ¢ is the electronic charge, and should not be confused with the label in e, p). Furthermore,
r, is the electron position operator, relative to the atomic nucleus and should not be confused with the
centre-of-mass coordinate r. The former acts on the space of |¢), whereas the latter acts on the space
of Ip).

'Although there are efforts to observe time reversal and parity symmetry violation throngh the
measurement of a permanent electric-dipole moment (PEDM) in atoms such as '"Hg [92, 93], these
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Figure 2.2: Energy level diagram. incorporating the centre-of-mass momentum and Kinetie
energy of the two-level atom. The detuning from resonance now takes into account the change
in momentum during the absorption of a photon, and is therefore momentum dependent.

frequency. The corresponding eigenvectors are:

IA;) = cos (0)|e.p + hk) + sin (8)e°|g. p)
IA_) = —sin (8)]e. p + hk) + cos (8)e'|g. p) (2.17)

with

cos(260) = %

Q

sin(20) = =

Q2
These eigenstates are sometimes called ‘dressed’ atomic states (in contrast to
‘bare’). and will be of critical importance when we discuss atom laser outcouplers

in chapter 7 [95]. The dressed states have energies given by:

2

hAy = +h (2.18)
Notice that on resonance, the energy is simply £h§2/2, and increases as the
detuning increases, In the absence of coupling (£2 = 0), the atomic state energies
are separated by |A| in the rotating frame, and are equal to the dressed state









24 The Two-Level Atom

different momentum p’. with the same drive frequency w. When off resonantly
coupled, the system oscillates at a higher frequency with a decreased amplitude.

Considering the envelope function of P, (or P,). we see that when FANGE—= = A\

0.5

Ot /27

Figure 2.3: Rabi oscillations in a two-level system. Probability is plotted on the vertical axis,
as a function of Q2 on the horizontal axis. Blue represents the ground state. and black the
excited state. The solid eurves represent coupling on resonance, i.e. A(p) = 0. Dashed curves

represent off-resonant coupling with A(p) = 1.202.
P.=PF; = % Thus 29 defines the full-width-half-maximum (F\WHM) for the
resonance. assuming no spontancous decay of the excited state. Thus. provided
A < €, one can achieve probabilities close to 1, even off resonance - an important
result when attempting to couple an entire cloud of atoms with some momentum
distribution.

We conclude by constructing the general solution defined in (2.5) for our initial
condition (2.23):

x (2 -~
|(,'(I))-/—i(’(p)sr)r—"’sin gf le.p + hk)

Q » $ ‘
+v(p) |cos 5! -&-i%sin __721 lg.p) d®p (2.29)
= /L'(p) (—ir“""\/ Pe(t)le.p + hk) + \/ Py(t)|g. p)) d’p (2.30)

Consider the term in the parentheses, which is weighted by the momentum

space wavefunction. This has the form of the common two-level atom solution.,
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Figure 3.1: Ramsey fringes as a function of detuning for @ = 12 and T = 1 (arb. units).
The inset shows the central fringes over the range [A] < 3. and is well approximated by
Py = 11 4+ cos(AT + ®)].

in the microwave domain, and inevitably the redefinition of the Second in terms
of a Caesium hyperfine transition.

Finally, it is worth noting that the Ramsey method was initially developed
as a spectroscopic technique for the measurement of nuclear magnetic moments.
It evolved into a general spectroscopic technique, and can be understood as an
interferometer in the sense that two phases are compared — the phase evolution
of the atomie state, compared to the phase evolution of the driving field. In op-
tics, this is analogous to a common-path polarisation interferometer, which can
measure, for example, a birefringence (which delays the phase of one polarisation
with respect to an orthogonal polarisation). Another similarity is to Young's
double slit experiment. which compares the phase of two waves originating from
two separated slits, at a screen some distance away. In this case, the slit separa-
tion is analogous to 7', the slit width analogous to 7. and position on the screen®
analogous to detuning. The fringes in figure 3.1 have a similar shape to the re-
sultant interference pattern in optics, and in the perturbative limit. the equation

describing Ramsey fringes is identical in form to that for the interference pattern

Le. the difference in the propagation distance from the two slits.
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of the double slit experiment (see [96] for the perturbative calculation).

3.3 The Mach-Zehnder Atom Interferometer

The Mach-Zehnder interferometer in optics has the configuration given in figure
3.2. An input laser beam (red) propagating in mode [1) is split by a 50/50
beamsplitter into modes |[1) and |2). These are then reflected by two mirrors
before being recombined and interfered at a second beamsplitter. Scanning a
relative phase shift between each arm ¢ (the wedge in the upper arm). results in
interference fringes at both output ports in the number of detected photons, N

and N,. Any additional phase shift can be measured as a shift in these fringes.

The mathematical description of beamsplitters and mirrors in optics is iden-
tical to that for two-level atoms as discussed in section 3.1. We may therefore
construct an analogous Mach-Zehnder atom interferometer by utilising a three-
pulse sequence in the order 7/2 — & — /2. where each pulse is separated by a time

T. The two 7/2-pulses arc equivalent to the beamsplitters in figure 3.2, and the

N @

¢
e

2)

1)

BS

Figure 3.2: Mach-Zehnder optical interferometer. Two beamsplitters (BS) and two mirrors
(M) are used to beamsplit, reflect, and then interfere an optical beam (red). [1) and |2) represent
“yertical” and “horizontal” propagation modes of the light, in analogy with |1) and |2) for a
two-level atomic system. The wedge represents some relative phase shift accumulated between
the two arms of the interferometer. Ny and N3 represent the number of detected particles in

each respective mode by two detectors (blue).
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Figure 3.3: Mach-Zehnder atom interferometer for atoms incident with a constant mean
velocity v, in an inertial frame. v, -k # 0 in general. although v, and k are perpendicular
in this figure for the purpose of comparison with figure 3.2. The red cllipses represent the
atom-light interaction regions. which are separated in time, and also space if v, is not parallel
to k. as is the case for a gravimeter configuration. In general. each interaction pulse can have a
different phase ¢,. The grey dashed line represents the eentre-of-mass coordinate of the atomic

state.

m-pulse equivalent to both mirrors as it simultancously reflects both states.” This
is shown schematically in figure 3.3 for atoms with a constant velocity v, in an
inertial frame. Recall that the two states of these interferometers are |1) = |1, p)
and |2) = [2.p + hk): separated in momentum by hk. Thus there is a physical
separation of the two arms of these atom interferometers.” Ramsey interfer-
ometers typically operate on microwave transitions, and thus the separation is
negligible for reasonable values of 7', due to the small magnitude of a microwave
photon’s momentum.” It is for this reason that almost perfect interference can
still occur in the Ramsey sequence in the absence of a ‘mirror’ the states are
still extremely well overlapped at the second beamsplitter.

We may once again utilise unitary transformations to determine the action of
a Mach-Zehnder pulse sequence on the state of the system:

[0(d7 + 2T)) = U(r)U(T)U(2r)U,(T)U (7)|1) (3.9)

In the geometry of figure 3.2, both mirrors can be thought to ‘act’ simultaneously in the sense
that the light beams arrive simultaneously from the first beamsplitter.

“In the current description, we are approximating the atoms by a momentum eigenstate, and thus
a separation strictly exists only in momentum space; the states are plane waves in position space.
However, we draw space trajectories in figure 3.3 to build the analogy with optics. In practice, atoms
are best described by wavepackets, which have a finite momentum width and spatial extent. Therefore,
given enough time, significant spatial separation occurs provided the momentum width is < hik.

“Equivalent to a velocity on the order of 10nm/s for **Rb, compared with atomic cloud sizes on
the order of hundreds of microns to several millimetres,
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Figure 3.4: Mach-Zehnder interference fringes as a function of the pulse detuning for €2 = 100
and T = 0.5 in arbitrary units. The inset shows the central region with |A] < 10, demonstrating
negligible sensitivity to the detuning in the limit that |A] < (.

where 7 is again the 7/2-pulse length, and each interaction pulse may have a
different phase in general. As was the case for the Ramsey interferometer, an
analytic expression for P is readily derived. However, its complexity limits any
insight gained by stating it explicitly. and we only plot the resulting fringes as
a function of A in figure 3.4. In this case, 2 = 100 and T" = 0.5 in arbitrary
units. Additionally. we assume that all three pulses have the same detuning and
optical phase. An important difference between these fringes and Ramsey fringes
is that for |A| < Q. P ~ 0: apparent in the inset which plots the same fringes
over the range |A| < 10. We sce that even for a modest ratio of A/Q = 0.1, the
population of the excited state is below 1%. Thus in the small detuning limit, a
Mach-Zehnder atom interferometer is insensitive to the detuning of the driving
pulses. Indeed. in this limit the expression describing the Mach-Zehnder fringes

reduces to:

P = l) [l — cos (@) — 202 + 03)] (3.10)

where ¢, is the relative phase of the ith coupling pulse. This obviously does not
depend on the detuning. This can be explained by noting that any evolution

between the first and second pulse due to a small detuning is reversed during the
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second period of free evolution by the m-pulse. This reversal of the evolution is
often called a *spin-echo’ [104], named in the context of a pseudo-spin descrip-
tion of two-level atoms and their evolution (see [95]). Thus. a Mach-Zehnder
configuration is not well suited to frequency measurement and therefore atomic
clocks. On the other hand, this immunity to small detunings is an advantage for

inertially sensors, which are the subject of the next sections.

3.3.1 High Precision Mach-Zehnder Gravimeter

We now show that the phase shift of a Mach-Zehnder atom interferometer is sen-
sitive to gravitational acceleration.® Consider an atom in a uniform gravitational
field with acceleration g = —gz, and with v, x k = 0. In the lab frame (or
equivalently the laser frame). the atoms undergo a constant acceleration leading
to parabolic trajectories in the z coordinate. This is shown in figure 3.5. The
solid grey parabola represents the centre-of-mass trajectory. Note that these are
space-time trajectories, and atoms (ideal) move only in the z-direction (compare
with figure 1.1 in the introduction). It is clear from the figure that the trajectories
for the accelerated case will sample a different optical phase at cach pulse with

respect to the constant velocity case. This is simplest to analyse in the centre-of-

Figure 3.5: Mach-Zchnder atom interferometer in a uniform gravitational field g = —gz. The
grey dashed lines are the unaccelerated trajectories from figure 3.3. Note this is a space-time
diagram. An area is enclosed in space-time as v, x k = (.

L3 2 . . . * * . .

Of course, a uniform acceleration cannot be distinguished from a gravitational field, and thus
all that follows also applies to uniform acceleration of the apparatus with respect to the freely-falling
atomic frame.
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(a)

2/
ll”h

0 p p+hk p+hk,

Figure 4.1: Three-level atom energy diagrams. (a) Electronic level structure. with two elec-
tromagnetic coupling fields of frequencies wy and wp > wy. This approximates the general
level structure of an alkali element such as *Rb. A, and A, are the detunings from one-
photon resonance with the excited state for states [1) and |2) respectively. 4 is the detuning
from two-photon resonance. One-photon coupling between |1) and |2) is neglected due to a
very large detuning. (b) Energy level diagram including the centre-of-mass momentum of the
atoms. similar to figure 2.2, In this case, Ay, Ay, and 4 become momentum dependent as given
in the main text. Based on the results of section 2.1, if we treat w; as a photon absorption,
and w> a photon emission, then we conple momentumn states |p) — [p + hk;) « |p + hk,) with

k. = k; — k.

one-photon coupling, these fields can drive a two-photon transition between the
two ground states. We may neglect one-photon coupling between |1) and [2) as
the driving fields are far off-resonance (wy < wy,ws).! We additionally assume
that w; only couples [1) to |e). and w, only couples |2) to |e), with detunings A,
and A; respeetively.® The difference between these detunings is the two-photon
detuning. 6 = A; — A,. Generally. one chooses 6 < A, A,.

'In addition, the ground hyperfine states of an alkali are only coupled via a magnetic dipole
interaction, which is much weaker than an electric-dipole conpling.

“In principle, wy also couples |2) to le) with a modified detuning of Ay — (wy — w2). Similarly w;
couples [1) to |¢). However, we neglect these couplings as they are far off resonant for the two-photon
process, which is of primary interest here,
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with

A(p) = Ai(p) + Ax(p) . 6(p) = Ai(p) — A2(P) , Aw =w; —ws (4.7)

and
2 , i
Erin = % k‘gmp ’ E2_, Gt
Explicitly:
Ai(p) = kln;p +wr + Ay (4.9)
As(p) = k2”'lp + wr — war + Ay (4.10)
where wy, = hk?/2m is the two-photon recoil frequency. Notice that Ej,, is

common to all states, and we may shift our zero of energy to remove it. Substi-
tuting the above into the Schrodinger equation, and choosing a frame rotating at

e~ tHot/h with:

A hAw h(w wr
o = 25212302~ nqal] + A (1.11)

gives the equations of motion for the state amplitudes:

&) ‘ A(p) e P2 Qe Cslt)

) %
e(t) | = 3 Qye'  4(p) 0 Ca(t) (4.12)
c1(t) Ghjes 0 —0(p) c1(t)

where we make the rotating-wave approximation once again, and Q; = d,.-E, /h
and Q, = dy. - Epz/h, are the Rabi frequencies for the respective one-photon
transitions. Consider the equation for ¢, (t):

?

eAt)= B (A(p)('(,(t) + Qe ey () + &22(*'i02('2(f)) (4.13)

We are interested in the regime where the population in the excited state is
negligible as we wish to avoid its relatively large spontaneous emission rate. This
occurs in the limit that both |A(p)| and |Ay(p)| > Q. s,

o(p)l|, for which












48

The Three-Level Atom: Raman Transitions




Part 11

Ingredients for Interometry:
Atomic Sources, Mirrors, and

Beamsplitters

49









52 Atomic Sources for Atom Interferometry

FOR R Fl=3
'..' = —r l‘" = 2
P2 | Y < =1
=== F'=0
~ 0.5 GHz T
~~ < 780.24nm at
hv
F=2
SaN ~ 6.8GHz
RF
—\_ : —
mp= -3 =2 -1 0 1 2 3

Figure 5.1: Hyperfine level structure of the S Rb D; line (not to scale). Different m g states
are shown as non-degenerate, as is the case in a weak magnetic field. Examples of allowed
electric-dipole transitions are shown (6,0, 7). which are important for laser-cooling. atomic
detection, and Raman transitions. An example of an allowed RF magnetic-dipole transition is
also shown, important for evaporative cooling, and atom-laser ontcoupling.

In Part I. only two- and three-level atoms were considered. In practice, all
atoms are multi-level, and can only be approximated as two- or three-level. when
accounting for transition selection rules and (one-photon) detuning.

5.1.1 Electric Dipole Transition Selection Rules

In the case of electric dipole coupling, the coupling term d-E from equation (2.3)
can be decomposed into three terms, which correspond to linearly independent
basis-polarisations that couple different Zeeman states with Amp = +1 or 0.
These transitions are labelled 0%, o~ and 7 respectively. If we choose our quan-
tisation axis parallel to the local magnetic field, then in this case only, o, o~
and 7 correspond to right circular, left circular, and linear polarisation respec-
tively. For example, linearly polarised light propagating along the magnetic field
is an equal superposition between 6% and o ; containing no # component. As
such, it can only drive Amyp = +1 transitions. Linear light polarised along the
local magnetic field is pure 7 polarisation. In addition, AF = +1 or 0, how-
ever, AF & Amg # 0 simultancously due to conservation of angular momentum
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An(p,) (a.n.)

04

02

o
&b

= gig 0
P

Figure 5.2: In-trap Thomas-Fermi momentum distribution along the i*"-direction (blue line).
compared with a gaussian of width Ap, (black dashed line). Both distributions are normalised
to 1 at p, = 0, with arbitrary units. Ap, is estimated as the gaussian standard deviation which

sets the areas under each curve equal.

from the gaussian standard deviation. For example, along the r-direction:

2048v/2 h
315792 1y
!
~1.65— (5.11)

Iy

Ape=

with similar expressions for the y- and z-directions, replacing r, with the corre-
sponding Thomas-Fermi radius. Thus. the momentum width of a BEC in-trap
is on the order of that dictated by the Heisenberg uncertainty principle. as in-
tuition would suggest. As r; ~ 10 pm. typical in-trap momentum widths are
Ap, ~ 0.01hk. This is around an order of magnitude smaller than the corre-
sponding ground state of a non-interacting Bose-gas [equation (5.3)]. For an eye-
opening comparison, a classical non-interacting gas with this momentum width
corresponds to a Maxwell-Boltzmann distribution at a meagre temperature 40 pK
for *Rb.

Ballistically Expanding Bose-Einstein Condensates

Although the momentum width of a BEC is very narrow in-trap, for the inter-
ferometers discussed in this thesis (and indeed most atom interferometry based
inertial sensors) the atomic source must freely evolve in an inertial frame. For a
BEC, this means releasing it from the trap, which is typically switched off sud-
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Atom-Laser Outcoupling

The basic operation of an atom-laser outcoupler for magnetically trapped con-
densates is a coupling between the trapped and untrapped mg states. Under a
weak perturbative coupling, atoms transferred to mg = 0 will freely evolve under
gravity and the mean-field potential. falling out of the magnetic trap and forming
an atom-laser beam. As an example, consider the |1, —1) state of ¥Rb. Along
the z-axis, the total potential for an atom is the sum of the Zeeman energy and
gravitational potential, giving:

Vi-1(2) = =mw?z® + mgz +
1-1(2) = smws g 5

Vio(z) =mgz + C (5.25)

+C (5.24)

for the trapped and untrapped mp states respectively, with g the magnitude of
acceleration due to gravity and €' a constant. These potentials are given in figure
5.4, which is a schematie representation of atom-laser outcoupling. Note that the
minimum of the trapping potential V; _; is not centred at the field minimum
(z = 0) but sags to z, = —g/w? due to gravity.

RF/Raman
coupling

Atom Laser

Figure 5.4: Schematic of atom-laser outcoupling from a magnetic trap. The condensate sags
ST A e R : :

under gravity to =z, g/w:. for which the local magnetic field environment then defines the

RF or Raman resonance required to outcouple atoms from a particular region in the condensate,
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Figure 5.5: Cross-section of ontconpling-resonance surfaces in the yz-plane (dashed lines) in
a harmonic magnetic trap. Energy increases from blue — green — vellow, with each contour
representing an equal energy-step size. The BEC is represented by the blue ellipse, with
accurate proportion to and position within the magnetic field. fiw,,.(0) labels the resonance
surface which intersects the centre of the condensate. It is approximately planar within the
condensate due to its sagging under gravity in the magnetic field.

The resonance at a particular position in the cloud is given by:

hres(2) = Vi—1(2) = Vio(2)

1 5, ;
- Emw;z‘ + hey (5.26)

where hwy, = pgBo/2 and resonance at the centre of the condensate is given by
wy(z,). Of particular importance is the dependence of the resonance on the bias
field. If the field-minimum is not stable in time, particularly over the duration of
the outcoupling interaction, a continuous, uniform. and low-noise beam of atoms
cannot be produced.

In three dimensions. the resonance condition corresponds to an energy surface
defined by equation (5.26), and is thus an ellipsoid. Figure 5.5 shows resonance
surfaces as lines in the yz-plane for (w,.w,) = 27 x (130, 13) Hz, which are typical
values for the atom-laser experiments in this thesis. The BEC is represented by
the blue ellipse, at its position and spatial extent within the magnetic field for the
specified trapping frequencies. Because the BEC sags under gravity to z = z,,
an intersecting resonance surface is just a small fraction of the total ellipsoid,
and is approximately planar in the ry-plane. Thus, in this regime and with
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[on Pump

N R~ .'1
_— . Y 2D MOT
NOT Science Cell
Beam (UHV)

Impedance &
Dispensers

Figure 5.6: Simplified representation of the atom-laser machine vacuum system. A 2D MO’
loads the 3D MOT through a pressure impedance. After laser-cooling and magnetic compres-

sion. the atomic ensemble is transported to the science cell where it is loaded into the magnetic

trap for evaporation to BEC. Magnetic coils and their configurations are given in figure 5.7.

portant features of this system included a highly stable magnetic trap. in order
to reliably address atoms in the BEC for outcoupling and pumping (sce section
5.3). as well as separating the magnetic trap from the MOT region of the vacuum
system; the intention being to simultancously load MOTSs while running a lasing
condensate.

Figure 5.6 gives a simplified schematic of the ALM vacuum system. A key
feature of the system are two quartz glass cells attached to a central main MOT
chamber. The MOT chamber and adjoining science cell is operated at UHV (~
10~ ' mbar) in order to suppress background collisions, which limit the magnetic
trap lifetime. Pumping is provided by a 40 L/s ion getter pump, and two titanium
sublimation pumps (TiSubs), as shown. The second glass cell houses the 2D MO’
and " Rb dispensers (Alvatech), and is isolated from the ultra-high vacuum region
using a pressure impedance. The 2D MOl provides a flux of up to ~ 10" atoms/s
for loading the 3D MOT using a push-beam (not shown).

The MOTs are constructed with the configurations given by the red arrows.
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Tofle

3D MOT Magnetic Trap O hiadle
Coils Coils

2D MOT
Coils

Figure 5.7: Atom-laser machine magnetic coils. 3D MOT coils are also used magnetic trans-
port of the laser-cooled cloud to the magnetic trap. The magnetic trap coils are mounted on a

chilled-water cooled aluminium block (see figure 5.8).

Counter-propagating beams are produced using retro-reflection, with the beams
converging slightly to balance the intensity due to power loss on retro-reflection.
Two-pairs of quadrupole ‘racetrack’ coils are used for the 2D MOT. as shown
in figure 5.7.
quadrupole field for the 3D MOT. coaxial with the 2-axis MOT beams (gravity

A single pair of circular current coils are used to generate the

1s in the —z-direction). These are capable of generating a gradient of up to
200 G /em, and are also used for magnetic transport of laser-cooled atoms to the
science cell (see cooling sequence below). Due to the large distance between them
(~ 20cm), the 3D MOT coils are required to carry up to 400 A of current. As
a result, they are constructed from hollow copper tubing, which allows water to
be pumped through the centre for cooling. The coils dissipate a peak power of
~ 6kW.

The magnetic trap is based on a simplfied loffe-Pritchard configuration known
as a QUIC trap. It constitutes a set of quadrupole coils. with an orthogonal loffe
coil as shown [129]. The trap is centred at the end of the science cell, with the
loffe coil coaxial with the y-axis: defining the longitudinal axis of the cigar-shaped
potential. Our trap is well approximated by a harmonic potential with trapping
frequencies given by (w,,w,) = 27 x (130, 13) Hz for the |1, —1) state.

The experimental sequence for producing a BEC is as follows. The 2D MOT
first loads more than 10" atoms into the 3D MOT in less than 30s. After loading,
the MOT is magnetically compressed before applying a stage of PGC [135], which
achieves temperatures of about 40 uK with little loss in atom number. At this
stage, atoms are predominantly in the F = 2 ground state. By applying an optical
pumping pulse of ¢~ light. resonant with the |F =2) — |F' = 2) transition.
atoms are pumped into predominantly the |1, —1) state. The cloud is then caught

in a magnetic quadrupole field with a gradient of 200 G /em generated by the 3D
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Figure 5.8: Photograph of the ALM, showing the magnetic trap, 2D and 3D MOTs. and
the translation stage used for magnetic transport. The red arrow indicates the direction of

translation.

MOT coils, which are switched on in under 10 gs. These coils are attached to
a precision translation stage, oriented along the r-direction of figure 5.6, which
allows precise transport of the cloud to the science cell and the magnetic trap. A
photograph of the ALM is given in figure 5.8, showing the 2D and 3D MOTs, the
translation stage and its direction of travel (red arrow). and the magnetic trap.
After transporting the atoms over 20 e, they are loaded into the harmonic trap.,
in which they are evaporatively cooled using a forced RF-evaporation ramp that
selectively removes the most energetic atoms. This results in nearly pure Bose-
condensed samples of up to 10° atoms, with no discernible thermal fraction.
The lifetime of the magnetic trap is ~ 40s. which is ample time for the exper-
iments in this thesis. Atoms are detected after release from the trap and during
ballistic expansion using standard absorption imaging. Absorption imaging is
well documented [118]. Briefly, we illuminate the atomic cloud using a 100 ps
pulse of o™ radiation, resonant with the |F =2) — |F' = 3) closed transition,
and image them onto a charge-coupled device (CCD) camera using a single lens
imaging system with a magnification of ~ 1.6. This image contains a shadow
of the atomic cloud. A second pulse is applied after waiting 100ms to give a
background light intensity image. Using Beer's law, the logarithm of the ratio of
these two images is then proportional to the column density n(y, 2) | n(r)dz,

where we image along the z-direction. In order to image atoms in [F = 1), we
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Figure 5.9: Simplified representation of the STRL/®Rb machine.

coils. The loffe coil is then ramped up converting the quadrupole trap field
into the harmonic field of a QUIC trap, with trapping frequencies of (w,.w,) =
27 x (156, 16) Hz for the |1. —1) state. There are in total 8 magnetic coils (not
including coils for imaging. RF evaporation, etc.) surrounding the science cell in
the coil mount., which is cooled by recirculated chilled water.

At this stage. there are on the order of 10” atoms at 200 K in the QUIC trap,
before RF forced evaporative cooling is applied over 15s. In this way, pure *"Rb
condensate of 2x 10° atoms can be produced. However. for the work in this thesis.

we instead load the cloud into a dipole trap for the last stages of evaporation. The
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Figure 6.2: Bessel functions of the first kind, J,,. plotted on a logarithmic scale as a function
of the modulation depth for 0 < n < 5. For a typically feasible EOM modulation depth of
¢ = m, the Bessel functions, and therefore the sideband amplitude, rapidly decreases with n.
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Figure 6.3: Phasor diagram for a phase-modulated electric field. Complex phasors for each
sideband evolve in a plane perpendicular to the frequency axis indexed by n.

sideband and the carrier. This can be summarised using the 3-dimensional phasor
diagram given in figure 6.3. Each sideband is represented along the frequency axis
(labelled by n) by a phasor in an orthogonal complex plane. These are shown in
blue for ¢t = 0 and |n| < 2. All phasors then rotate around the frequency axis in
time. at their respective sideband frequency. In the rotating frame of the carrier,
the nth sideband rotates at nw,,.

Now. assuming that wq is the resonant frequency of the desired Rb hyper-
fine transition, then provided Aw,, = wy with k a non-zero integer, there will
exist pairs of sidebands in the phase-modulated beam, which satisfy the Raman
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Figure 6.4: Laser-system setup for the production of two Raman laser beams for atom-laser
outcoupling, separated in frequency by ~ 6.8 GHz. ECDL: external cavity diode laser, Ol:
optical isolator, A/2: half-wave plate. A/4: quarter-wave plate, PBS: polarizing beamsplitter
cube. AOM: acousto-optic modulator used for intensity control and fast shuttering, M: mirror.
FC: fiber coupler, and EOM: electro-optic modulator driven by a ~ 3.4GHz sine wave. A
phasor diagram of the frequency components in each of the two Raman beams is included after
each fibre coupler. Note that higher order sidebands are present in the modulated beam, but
only first order are displayed in the diagram.

off-resonant when paired with the carrier, and do not contribute to the Raman
coupling. It is important to minimise power in the carrier, as this suppresses
formation of a standing wave with the unmodulated beam. which can result in
diffraction of the condensate as well as the outcoupled atoms. This is the pri-
mary reason for choosing w,, = wy/2. as the microwave frequency-generator has
a limited power output, and the EOM half-wave voltage generally increases with
Wm. At this stage. one could couple both beams into a single fibre to ensure
identical spatial modes. However we find this step unnecessary for atom-laser
outcoupling as both beams originate from identical single-mode optical fibres.
connected to identical fibre collimators. The laser-system results in two colli-
mated beams with ~ 1 mm diameter. and approximately 4 and 8mW for the

modulated and unmodulated beams respectively.
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6.2.2 Outcoupler Geometry

To test and characterise the outcoupler, we prepare BECs of ¥Rb in the [1, —1)
state of typically 2.5 x 10° atoms with no discernible thermal fraction. Our [offe-
Pritchard magnetic trap has trapping frequencies of w, = 12Hz and w,,w. = 128
Hz. a field gradient of 200G /cm. and a stable bias field of 2G at the trap min-
imum allowing highly reproducible atom laser production. Raman outcoupling
is applied using the three-level coupling scheme of figure 6.5(a) with the Raman
beams directed onto the condensate using the geometry shown in Fig. 6.5(b). We
focus cach beam using 10 em and 50 em focal length lenses for the horizontal
and vertical beam respectively.® which ensures a high intensity, and therefore
a high Rabi frequency. This configuration was chosen for its simplicity regard-
ing characterisation of the coupler. It allows the beam polarisation to be set to
(ideally) pure o for the modulated beam, which propagates along the magnetic
trap bias field direction and (ideally) pure 7 polarisation for the unmodulated
beam. which propagates orthogonal to bias field direction. This ensures that
only the transition in figure 6.5 is possible, i.e. a photon is absorbed from the

w42 sideband in the horizontal beam via a ¢* coupling, and emitted into the

v N2 nm

§ - - F=2
2 !
5510 =
S ‘\ ~ 6.8GHz
\ .
< 1aMHz F =1

Figure 6.5: (a) Energy level scheme for outcoupling, and (b) Raman beam geometry. Only
the F' = 1 manifold of the 5? Py, excited state of *'Rb is shown. 4 is the two-photon detuning.
The bias ficld. By. is directed along the long axis of the condensate. We direct the modulated
Raman beam along this direction, with circular polarisation to drive absorption of a @™ photon
from the w.; sideband. The unmodulated Raman beam propagates upwards and is linearly
polarised along By to drive emission of a = photon. The two-photon transition gives the
outcoupled atoms a net momentum kick of v2hk producing a beam in the continuous regime.

O ‘3L ™) : o ~ 3 - - . . -
T'hese focal lengths are chosen simply due to space limitation in the experimental setup.
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Figure 6.6: Schematic representation of polarisation-modulation, resulting from the super-
position of two orthogonal clectromagnetic waves with slightly different frequencies. The blue
circle represents the plane of polarisation at time t. The black vector is normal to this plane in
all figures. and is used to help guide the eye. This vector. and therefore the polarisation plane,
precesses around the z-axis, completing one full eyele in a time 75 = 27 /wy. The trajectory of
the normal vector is represented by the red cirele, which is centred on the s-axis. Thus. the

plane of polarisation is modulated at the hyperfine-resonance frequency wy

normal vector in time. to help guide the eye. The figure plots six orientations
of the polarisation plane, at values of ¢ ranging from ¢ = 0 to t = 7,. where
To = 2 /wy — the period of the microwave frequency corresponding to resonance.
We see that at t = 79, the plane of polarisation has completed one full oscillation.
and is thus modulated at the hyperfine resonance frequency. This observation
will be contrasted to the presence of amplitude-modulation. when we discuss

operation of the Raman coupler as an atomic beamsplitter in section 6.3.

6.2.4 Outcoupler Characterisation

To characterise the outcoupler. we apply the Raman beams with a given pulse
shape. directly after evaporation to BEC. The magnetic trap is then suddenly
switched off, allowing all atom clouds to expand for 15ms. The atoms are then

illuminated by a 100 ps pulse of resonant light, and imaged onto a CCD camera.
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Figure 6.8: (a) Calibration of the two-photon Rabi frequency. The circles represent the relative
number of atoms in the |2,0) state as a function of total power in the Raman beams. (b) Rabi
oscillations between the [1, —1) and 12,0) hyperfine ground states of ** Rb. The relative number
of atoms in the F' = 2 ground state is plotted as a function of pulse time, with a oscillation
frequency of ~ 10 kHz. Incomplete and decaying oscillations are observed due to an imperfect
and decreasing overlap of the wavefunctions for the two coupled states in time. In both data
sets. the error bars represent one standard deviation in total atom number and the solid line is
a simulation of the GPE for our experimental parameters, which allows calibration of the Rabi

frequency in (a).

qualitatively captured by the numerics. One possible reason for the quantitative
discrepancy is that the simulation assumes a uniform Rabi frequency across the
condensate. whereas in the experiment we focus the beams to maximise the
intensity. This could result in a intensity gradient across the cloud. In future
applications, we could use larger beams with a relatively flat intensity profile to
mitigate this effect.

Figure 6.9. shows an absorption image of a atom-laser produced by the Ra-
man outcoupler for 9ms of outcoupling. The condensate is released at the end
of this 9ms. and the atoms are allowed to expand for a further 15ms before an
absorption image is taken. The beam is displaced horizontally from the BEC due
to the horizontal component of the momentum transfer by the Raman transition.
It is also displaced vertically because of the vertical component of the transferred

momentum. It should also be noted that it represents the last 9ms of a 24 ms
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parabolic trajectory, and as such looks relatively vertical. In chapter 7. a de-
tailed comparison between this hyperfine-Raman outcoupler. a Zeeman-Raman

Ulll('nllpl('l‘. and an RF t)lll('(nll)l('l' will be presented.

6.3 The Raman-Laser System as an Atomic Beamsplitter

We now turn to using the EOM based Raman laser-system as an atomic beam-
splitter. In general, this could be used to build either a Mach-Zehnder. or Ramsey
interferometer. However, for the work in this thesis, we apply it to a free-space
Ramsey interferometer, which utilises a low-density, freely-falling. |1.0) atom-
laser pulse as the atomic source. Using the EOM with a novel modification to
the system so far presented, allowed passive phase-stabilisation. enabling opera-
tion of an atomic shot-noise limited Ramsey interferometer. as presented by D.
Doring et al. in [105].

In addition to requiring a highly-stable relative phase, a Ramsey interferome-
ter uses a co-propagating Raman transition, with negligible momentum transfer

and spatial separation between states (see section 3.3). Furthermore. it is typical
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Figure 6.11: Raman laser-system setups for our Ramsey atom interferometer, from [105]. (a)
EOMI placed inside an optical Mach-Zehnder interferometer. which requires active stabilisation
to lock the relative phase of the modulated and unmodulated beams. (b) EOM used in an
optical Sagnac interferometer, which has a high passive stability. as phase fluctuations are

common to both paths.

level atom formalism from chapter 4, it can be shown that:

O = AQoe® + BQy Y ", (0/2)e™m! (6.12)
0 = AQge'™wmt+9) 4 B, Z i" I (0/2)e! ™ )omt (6.13)

where. as for equations (6.4) and (6.5), w. and «w_; have been used to define
the rotating frame, and the rotating wave approximation has been applied. The

effective Rabi frequency is then:

0,0 - 02 _
(== _)'A = -,*.413.1‘.(0/2)ﬁ [(—=1)*e® + "]

—1*:”3.1‘.((')/2)%"2('()s(fi). even k
= (6.14)
iA.-n‘_‘[g,I‘.(cu/'z)s-El sin(f#), odd k

<)

‘hoere o 01 » » ey . 2 r
where we again neglect off-resonant terms, assuming w,, > !-_-{3 We sce that for

even k., 6 = jm gives the maximum magnitude for . with 7 an integer. Whereas
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Figure 6.12: Comparing phasor diagrams for (a) an amplitude-modulated electrie field. and
(b) a phase-modulated electric field. (b) Is identical to figure 6.3. In both cases, phasors are
drawn at ¢ = 0. Notice that for amplitude-modulation, the sidebands are parallel to the carrier,
whereas for phase-modulation. only the even sidebands are parallel to the carrier. Although
not shown. every even'” order sideband is out of phase with the adjacent even™ order.

In the case of the Raman coupler we superimpose a second carrier beam
[the dashed phasor in figure 6.12(b)| onto the phase-modulated beam. This sec-
ond carrier can then be amplitude-modulated by the sidebands in the phase-
modulated beam by the previous reasoning. Comparing (a) and (b). if the
additional carrier has # = 0. then it has an amplitude-modulation-like phase
relationship with even sidebands, whereas if # = 7/2, it has this relationship
with the odd sidebands. Thus there will be an intensity beat at even and odd
multiples of the modulation frequency for cach respective case. For a general
phase, the even and odd beats will be proportional in magnitude to cos(f) and
sin(#) respectively. With respect to driving a Raman transitions, it is the k"
sideband which satisfies two-photon resonance with the additional carrier. and
thus the result of equation (6.14) is equivalent to the presence of an intensity
beat at kw,, = wy; the hyperfine-resonance frequency.

It is worth pausing at this point to highlight an interesting classical picture.
We have seen that it is necessary to have either a polarisation-modulation. or
amplitude-modulation at the resonance frequency. in order to effectively drive
a Raman transition. Both of these cases correspond to a modulation of a the
clectric field at the resonance frequency - either a modulation in its direction. or
its magnitude. If we model our atomic resonance as a classical dipole — charges
connected by a spring, with resonant frequency wy — then both polarisation-
and amplitude-modulation generates a driving force at the spring’s resonance
frequency.
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Figure 6.13: Beat signal from an optical Sagnac with an EOM in the interferometer arms. as
a function of the EOM drive voltage. from [105]. 1} is an arbitrary reference voltage. The EOM
is driven at w,, = 1 GHz. For a Sagnac interferometer, 4 = 7, and thus we expect the signal
at odd multiples of the modulation frequency to be suppressed. Blue triangles, red cireles. and
black squares correspond to beat signals at 1. 2, and 3GHz (k = 1, 2, 3) respectively. Figure

courtesy of D. Doring.

6.3.3 Resultant Ramsey Fringes

We now present atom interferometry results. in order to highlight the effectiveness
of the Raman coupler as a beamsplitter, which is able to produce an atomic
projection-noise limited Ramsey interferometer [105). This work was conducted
in collaboration with D. Doring et al.. and is not the focus of this thesis. It is.
however, an important product of the Raman coupler. Specifically, we present
the results of two free-space Ramsey interferometers, one using the Mach-Zehnder
configuration [151], and the other using the Sagnac configuration [105).

We only briefly describe the general experiment here. A more detailed account
can be found in [105. 151]. In particular. measurement at the atomic shot-
noise limit required not only a sufficiently quiet beamsplitter, but also suitable
absorption imaging and number counting/calibration. Details of the detection
system can also be found in [105], and in the theses of G. D. McDonald [143].
and D. Doring [158].

After producing a BEC, as described carlier, we outcouple a pulsed atom-
laser in the [1,0) state using RF outcoupling. This pulse typically contains on
the order of 10" ¥Rb atoms. It evolves freely under gravity, falling through two
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Figure 6.14: Optical setup for generating the two Ramsey interaction zones, from [151].

Raman interaction zones situated on the order of 100 gm below the magnetic trap
minimum. The interaction zones are two parallel light-sheets sourced from either
the Mach-Zehnder or Sagnac configuration Raman coupler. and separated verti-
cally by ~ 300 #m. The intensity of each light-sheet is adjusted to compensate
for the difference in the speed of the cloud at cach sheet, as well as any differ-
ence in the sheet thickness. This ensures both interaction zones correspond to a
/2 pulse. Figure 6.14 summarises this optical setup. The two light sheets are
generated using a birefringent calcite crystal. resulting in two emergent beams
with orthogonal polarisation. The power in each beam is controlled by rotating
the input (linear) polarisation with respect to the crystal axis using a half-wave
plate. Two cylindrical lenses, one before and one after the caleite. produce the
light sheets, ensuring that the focal point of each is well separated from the point
at which they cross (as drawn in the figure). A quarter-wave plate is used to
produce circularly polarised light for driving o transitions.

After falling through the Ramsey interaction zones, the two clock states are
spatially separated using the Stern-Gerlach effect. which separates different mag-
netic states using a magnetic field gradient. In this case, we are utilising the
second order Zeeman shift, which also depends on the total atomic angular mo-
mentum F. The field gradient is generated by pulsing the magnetic trap coils.
Each state to is then simultancously absorption imaged on the F =2 — F' =3
transition, after repumping atoms from F' = 1 to F = 2 using a short repumping
pulse (100 gs). This allows us to calculate the probability of measuring atoms in
h

[2,0) as p = \—.}FLG where N, is the number of atoms in the i'" state.



100 A Hyperfine Raman Coupler for Atom Optics

;: 0.8 | | | | |

% 0.6 \l ;L %‘ {f l* |{ & ,"

2 I

Sl |

=04 |

; \ Jl Rl " ' \ ll

= | p

= 0.2 ~". {’ %\. 1H \ f ﬂ\ [

vV VY vV Y

‘) A - A e P -

600 S00 1000 1200 1400 1600 1800 2000
Detuning & (Hz)

Figure 6.15: Typical interference fringes from an atom-laser based Ramsey interferometer,

from [105].

Figure 6.15 shows a typical set of ramsey fringes, and corresponding absorp-
tion images, from a Ramsey interferometer driven using the Sagnac configuration
Raman coupler. The fringes are scanned by varying the detuning [see equation
(3.8)]. which amounts to varying the microwave frequency that drives the EOM.
We observe a high fringe visibility, with a fringe period of 259.5(5) Hz correspond-
ing to T" = 3.853(8) ms. extracted from a sinusoidal fit (red line).

In figure 6.16, we compare fringes obtained using (a) the Mach-Zender config-
uration (from [151]) to those obtained using (b) the Sagnac configuration (from
[105]). In both cases, each data point represents the average of 5 experimen-
tal runs. with the error bars giving one standard deviation. There is a clear
improvement in the signal-to-noise ratio (SNR) for the Sagnac configuration.
The Mach-Zehnder configuration gives a phase-uncertainty of ~ 240 mrad over
5 experimental runs. whereas the Sagnac configuration gives ~ 5mrad. This
demonstrates the high level of passive stability for the Sagnac configuration, and
that the Mach-Zehnder configuration was limited primarily by the stability of

the optical Mach-Zehder interferometer, and its active lock system.

The Sagnac configuration is in fact stable enough to produce a Ramsey inter-
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Figure 6.16: Ramsey fringes obtained using the hyperfine-Raman coupler in (a) the Mach-
Zehnder configuration, and (b) the Sagnac configuration

ferometer, limited primarily by atomic projection noise. Projection noise is most
simply understood from binomial statistics. At the output of the interferometer,
cach of N atoms is in a superposition of two internal states, with a probability
p for being in state |2,0). Upon measurement. the atom is projected into one of
these states. and a sample with N atoms represents N trials of this proverbial
‘coin flip” experiment. In any given experimental run, we measure p by measuring
the number of atoms in cach state, and binomial statistics then predicts that the

ariance in p is given by:

Q
|

S = _,l;p(l -p) (6.17)

L Op = %\/p(l - p) (6.18)
Typically, an interferometer is operated at mid-fringe (p = 0.5) to maximise the
change in p for a given phase shift, and thus o, = -_,T',-\- is the atomic projection-
noise contribution. Additionally, there will be a contribution from photon shot-
noise in the absorption imaging process. The details of this are beyond the scope
of this thesis. other than to state that the photon shot-noise contribution scales as
Op X v (see [143, 158] for details). Thus. for sufficiently large atoms numbers,
atomic projection-noise will be dominant.

Figure 6.17 shows the measured variance in p as a function of total atom
number for (a) a single beamsplitter operation, and (b) the full Ramsey interfer-
ometer cyele. The long-dashed lines represent the theoretical atomic projection-
noise. and the short-dashed lines represent the photon shot-noise. The solid

lines are their sum. Data points represent the experimentally measured standard
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Figure 6.17: Atomic projection noise in (a) an atomic beamsplitter, and (b) a Ramsey inter-

ferometer.

deviation for 5-10 samples. with error bars giving the confidence in the measure-
ment due to the finite sample number. It is evident that quantum noise (atomic
and photonic) are the fundamental noise sources in both cases, particularly for
the higher atoms numbers: demonstrating the excellent passive stability of the

Sagnac configuration for the Raman coupler.

6.4 Conclusions

In this chapter, we have demonstrated a Raman laser-system that is a versa-
tile and effective tool for coherently manipulating atomic ensembles at the level
required for atom interferometry. Operating via a pure two-state coupling, it
produces atom lasers in a single atomic state and has the potential to trans-
fer correlation statistics from a quadrature squeezed optical beam, making it
a promising tool for investigating quadrature squeezing of atom lasers and en-
tanglement in atomic beams. The same basic system. operated as an atomic
beamsplitter between the hyperfine ground states of S"Rb. was used to build
a quantum projection-noise limited Ramsey interferometry, with a freely-falling
atom-laser pulse as the atomic source. Although we have demonstrated oper-
ation of this system using ¥ Rb. the optical setup is relatively straightforward
compared with other Raman laser-systems. such as OPLLs, and can easily be
transferred to other atom species such as sodium, lithium. or caesium: as well
as to other applications of Raman transitions. Chapter 7 will present a detailed
comparison of the Raman laser-system to other typical atom-laser outcoupling

systems.
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Figure 7.1: Adiabatic potentials (solid lines) formed by conpling [t) and |#) with radiation of
frequency w. The inset shows the level coupling diagram as a function of the vertical position
in the trap. The dashed lines represent the potentials when the coupling is switched off,
showing two crossings. The crossing at = ~ —17 g represents the centre-of-mass position of
the condensate, with the blue curve representing spatial extent of the BEC in the potentials.
Note that the height of blue curve is not indicative of the chemical potential.

Figure 7.1 plots the adiabatic potentials as a function of 2. The dashed lines
represent the bare atomic potentials in the rotating frame. which cross at the
point of resonance. Clearly Vi admits bound states, and atoms in |A;) remain
bound in the limit of very strong coupling.

For a typical sequence used to produce an atom laser, outcoupling is switched
on non-adiabatically, projecting the atoms onto the dressed basis. For a two-
state system this expansion is given by |t) = ;—,;,_;(I,L) —|A2)) at A(z) = 0
[see equations (2.17)), and is valid even beyond the extent of the cloud in the
strong coupling limit. The wavefunction is therefore distributed evenly between
a bound and unbound component leading to approximately half the atoms re-
maining trapped in the Vi potential, while the other half leave the trapping
region in the V_ potential. When the outcoupling is switched off, the clouds are
projected back onto the bare states, producing a second burst of atoms which
may leave the trap region; however, a significant fraction of the atoms remain
trapped. Hence a beam is not produced, and the bound dressed state prevents

production of an atom-laser for strong outcoupling.
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Figure 7.2: Absorption image data for a Raman outcoupler operating between Zeeman states
of the F = 1 ground state of ** Rb. Red (blue) represents a high (low) atom density. and
the vertical scales give the vertical extent in space. (a) Raw absorption images displayed for
a 100 us pulse of ontcoupling. Images from left to right correspond to increasing coupling
strength. These images were used to calibrate the Rabi frequency for our setup. as described
in Section I11. (b) These data represent absorption images taken for 14 ms of outcoupling. and
different coupling strengths. Each column of pixels corresponds to a single absorption image
that has been integrated (summed) in the direction perpendicular to propagation of the atom
laser beam. Hence, each column represents the linear atomic density in the vertical direction
for a different coupling strength. In the left most columns. a smooth continuous beam is visible
for low coupling strengths. As coupling strength is increased. atom laser shutdown can be seen
in the form of complex density profiles at intermediate coupling strength, and then the clear

effect of the dressed states at the highest coupling strengths (right most columns).

A useful intuitive picture of weak outcoupling is an irreversible process caused
by the gravitational force removing atoms from the resonant region within the
trapped cloud. Strong coupling. on the other hand, is reversible and well de-
scribed by a two-level model. The boundary between these two limits corresponds
to the onset of complex outcoupling dynamics and atom laser shutdown. The in-
termediate coupling strength has been estimated using a simple model in [54] by
comparing the timescale associated with the Rabi-flopping frequency 1 to that
associated with the fall time 7y, through the coupling region due to gravity.

As the coupling strength and hence v is increased, the time required for an
oscillation of the untrapped state population becomes comparable to or less than
the fall time 77,. and one can no longer consider the effect of gravity to be
irreversible. Atoms are coupled back into the trapped state and remain localised
within the coupling region. It is by this reasoning that 1. and not € has been
used as the parameter for comparison of RF and Raman based outcouplers. Any

momentum imparted by a Raman transition will reduce 77,y enabling a stronger



110 An Experimental Comparison of Atom-Laser Outcouplers

Figure 7.3: (a) Simplified level diagram of *“Rb for the different ontcoupling schemes. (b)
Orientation of the Raman beams with respect to our magnetic trap for the two-state hyperfine
outcoupler. (¢) Orientation of the Raman beams with respect to our magnetic trap for three-
state Zeeman coupling. An rf antenna (not shown) drives transitions between Zeeman states in
the F = 1 ground state. Optical Raman beams drive a two-photon transition between hyperfine
(black) or Zeeman (blue) ground states of 5 Rb.

coupling to be used before reaching the boundary between the strong and weak
outcoupling regimes; hence a Raman outcoupler will result in a larger flux than an
RF outcoupler, while still remaining in the weak outcoupling regime. In addition.
Dugué et al. predicted that a two-level system will result in a higher flux than a

multi-level system for the same value of v [131].

7.2 The Comparison of Raman and RF Outcouplers

Our production of BEC is described in section 5.4.2. Specifically, condensates

of approximately 2 x 10° atoms of *'Rb are prepared in the

1, —1) state in the
QUIC trap, with (w,.w,) = 27 x (130.13) Hz. Radio frequency outcoupling is
performed using an RF loop antenna driven directly by a signal generator at
~ 1.34 MHz, which couples the three Zeeman states in the F = 1 manifold.
We compare this to two Raman outcouplers, one of which operates between the
Zeeman states of F' = 1 and the other between the F = 1 and F = 2 hyper-
fine ground states. The former is described in detail in reference [172]. Briefly.,
we drive the two-photon transition between |1, —1) and [1,0) using two phase
locked optical beams separated in frequency by ~ 1.34 MHz. and detuned from
the 5°Py/» resonance by A, ~ 300 GHz. The Raman beams are produced by
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Figure 7.4: Relative number of atoms in the atom laser beam for Zeeman-Raman outcoupling
as a function of 5. At vy = 500 Hz the number of atoms in the atom laser begins to decrease
showing a clear effect of the bound dressed state shutting down the operation of the ontcoupler.
Absorption images are shown for each of the specified data points, and correspond to 14 ms of

ontcoupling. Error bars represent statistical uncertainty in the total number of atoms

outcoupler. the system is left to evolve for 800 pus after the coupling is switched
off. This evolution time was maximised in order to separate the three magnetic
sub-states as much as possible. while still imaging all atoms onto the CCD cam-
era. For the Raman outcoupler, the system can be evolved for 3.5 ms after the
coupling is switched off due to the absence of an anti-trapped state. The clouds

are left to expand for 4.5 ms after the trap is switched off, and a standard absorp-

tion image is taken along the radial trapping direction |z in figure 7.3(c)]. The
sequence is repeated for different coupling strengths and the relative number of
atoms transferred to the untrapped state is plotted as a function of 14 in figure

7.5 for RF (black circles) and Raman (blue diamonds) outcoupling.

Three examples of the absorption images used to extract the atom number
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Figure 7.5: Relative atom number in the atom laser beam as a function of 1. Black circles
correspond to rf data, and blue diamonds to the Raman data. The dashed lines are fits to the
data of the form y = A(1 — ¢ " %0/} and allow a comparison of the bound state onset for
each data set via the free parameter, r. Absorption images are shown for each of the specified
points in the rf data. Error bars represent uncertainty in the fitted atom number for each

image.

for RF data are shown in figure 7.5. as well as regions of interest corresponding
to trapped. untrapped. and anti-trapped atoms. Atom numbers are extracted
by integrating a Gaussian fitted to cach row of an image and summing over all
rows for a given region. To a good approximation. the ‘trapped.” ‘untrapped.’
and ‘anti-trapped’ regions correspond to mp = —1, 0.and 1 respectively, and
the expected features are visible in all three images. For weak coupling [point
(a)]. a reasonably clean beam is scen, 3ms in length. This defines the region
in which untrapped atoms will lie for all images. There are no discernible anti-

trapped atoms. At the other extreme [point (¢)), the strong coupling image shows
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Figure 7.6: Schematic representation of atom-laser outcoupling from an optical trap. (a) The
total traping potential in the vertical direction, which is the sum of the gravitational potential,
a Gaussian optical potential. and the meau-ficld energy. As the trap depth is lowered, atoms
are extracted from the trap by the gravitational force. Note that atoms with the cloud see
a flat potential. (b) The same potential drawn in two-dimensions, with classical trajectories
given by the yellow arrows. As atoms are still influenced by the optical potential, and thus are
not repelled transversely by the mean-field. (¢) Surface potential of an magnetically outcoupled
atom-laser for comparison. In this case. the atoms are insensitive to the trapping potential,
and diverge due to mean-field as discussed in section 5.3.1.

the vellow arrows. Notice that as atoms leave the trap. they are still influenced
by the (attractive) optical potential, which perfectly balances the mean-field re-
pulsion, and are thus not repelled by the mean-ficld. This should be compared
with the case of outcoupling from a magnetic trap, in which outcoupled atoms
are no longer sensitive to the magnetic field, and only evolve under the gravita-
tional and mean-ficld potential. The potential surface is shown in (¢). along with
classical trajectories, and was used to estimate the atom-laser momentum width
in 5.3.1.

Figure 7.7 gives a tantalising set of data for a typical optical atom-laser pro-
duced in our system. (a) is an absorption image, taken after ~ 20 ms of expansion
after switching off the dipole trap, and the beam length corresponds to ~ 11 ms
propogation from the bottom of the BEC to the bottom of the image. We mea-
sure the divergence of the beam by fitting transverse line profiles to the integrated
Thomas-Fermi distribution p.(y) = po(1 — y*/R*)*? where R is the beam radius
and py the peak column density. Two examples of these fits are given at position
I and II. The fitted radius is plotted as a function of the vertical position 2 in
(¢). Although in principle R x y'/2, a lincar fit is sufficient for our data, particu-
larly after 20 ms of expansion. From the linear fit, we extract a divergence angle
# = (0.05 £ 0.12) mrad.

Although our measured divergence is not discernible with the current measure-
ment uncertainty. the expected Heisenberg limit for our experimental parameters
(wy = 27 x 28Hz, N ~ 10%atoms) is on the order of 0.1 mrad: consistent with
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Figure 7.7: (a) Absorption image of a typical atom-laser outcoupled from an optical trap by
lowering the trap depth. (b) Beam radius as a function of the vertical position in the beam.
I'he Radius is given by fitting a Thomas-Fermi profiles fit to horizontal slices of the beam, with

two examples given in [ and 1L Figure courtesy of P. Altin.

the measurement uncertainty. This is strongly suggestive of a Heisenberg-limited
atom-laser beam divergence. These preliminary results are being investigated
further. and will be improved by increasing our absorption imaging resolution, in
addition to theoretical modelling of the outcoupling process.

In any case, freely propagating atom-laser beams such as that of figure 7.7
are rarely, if ever, found in the literature: such a clean, narrow momentum-width

source holds great promise as an atomic source for future inertial sensors.
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Figure 8.1: Schematic representation of Bragg diffraction in crystals [176].

optical path difference (OPD). equal to 2dsiné., where d is the spacing between
planes as shown. When the OPD is equal to a whole number of wavelengths
nA as shown, the waves constructively interfere and this condition is known as
Bragg's Law:

nA = 2dsiné, (8.3)

It is important to note that this simple derivation assumes the wave are refleted
from individual planes, implicitly assuming that many scattering centres and
crystal planes are sampled in a highly symmetric system - essentially a “thick™
reflection grating and the signature of strict Bragg diffraction. This point will be
important when we consider diffraction of atoms the quasi-Bragg regime [175] in

chapter 10.

8.1.2 Bragg Diffraction of Atoms

Given the wave nature of matter, Kapitza and Dirac theorised in 1933 that an
. It was

electron beam could be diffracted by an optical standing wave [177
not until the availability of the optical laser that this was observed in 1965 by
Bartell ef al. [178]. We can equivalently consider Bragg diffraction of atoms by
a periodic potential generated with an off-resonant optical standing wave. In
the case of atoms, the process is resonantly enhanced due to their internal level
structure [179]. The description is essentially identical. with the role of light and
matter reversed. and A replaced by the de Broglie wavelength Ayg. This was first
demonstrated with sodium and published in 1988 [80]. In this case, the analogy
is explicit: a collimated beam of sodium atoms was scattered from an optical

standing wave at a variable angle of incidence. leading to the observation of
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Figure 8.2: Schematic representation of Bragg diffraction of atoms from a one-dimensional
optical lattice. Red ellipses represent antinodes of the standing wave. and wave packets rep-
resent an atom. The grey transmitted wave packet represents an atom that is only partially

diffracted. for example. in the case of a beam splitter.

diffraction orders. Bragg diffraction. often thought of as the ‘thick-grating’ regime
in reference to the optical analogy. should be distinguished from the Raman-Nath
or “thin-grating” regime [114]. Raman-Nath diffraction is analogous to normal
diffraction in optics resulting in multiple diffraction orders. Normal diffraction of
atoms has been used for atom interferometry [111], however it leads to inefficient
population of high-momentum states and is therefore not well suited for LMT

beamsplitting.

In figure 8.2, we illustrate diffraction in the lab frame for atoms incident
at an angle of #, and momentum p,. Notice the similarity with figure 8.1. The
optical standing wave, represented by the red ellipses, is composed of two counter-
propagating laser beams of wavevector k. As # # 0, there is a component of
velocity along k. The Bragg condition on the incidence angle can then be restated

as a condition on this component of the atomic velocity:

nAgp = 2dsin(6,,) (3.4)
r i 2dv; sin(0 5
1— = 2du; s <

= dv; sin(d,,) (8.5)
h
n—m =1, (8.6)

2dm
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Figure 8.5: Optical setup of the LMT beamsplitter at the science cell of our dual-species BEC
machine. The incoming beam contains both (phase-locked) laser frequencies co-propagating
and orthogonally polarised. travels vertically through the cell and is retro-reflected to produce
counter-propagating frequencies. The quarter-wave plate (A/4) is necessary to produce the
optical standing-wave that diffracts the atoms. The magnetic-trap coils are shown for reference;
to be compared with figure 5.9.

dual-species BEC machine from below. ideally parallel to gravity. As k; and
k, are orthogonally polarised, the light propagates through a quarter-wave plate
after emerging from the cell. before being retro-reflected by a mirror. This results
in a 90° rotation of the polarisation for the downward propagating beams, which
results in two (generally travelling) optical lattices with opposite k,. As the atoms
are in free fall during the interferometer sequence, only one of these lattices is
kept on resonance when compensating the Doppler shift by sweeping the laser
frequency difference. Alternatively, one of the frequencies can be rejected using
a PBS just before the retro-reflector, and a second quarter-wave plate below the

glass cell.

8.2.2 Phase-Noise Analysis

Although the two beams are sourced from a single ECDL, which ensures a com-
mon phase, the counter-propagating frequencies reaching the atoms have trav-
elled slightly different paths via the two AOMs and then the retro-reflector for
k2. Thus the relative phase of the two beams will be compromised by mirror
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Figure 8.6: Power spectral density of the Bragg laser-system optical-beat signal for our original
setup used in reference [63] (red), and our recently improved setup, housed in an acoustically

isolated laboratory (black). The inset zooms into a 10 Hz span of the black trace, shown as the

grey-dashed rectangular region.

vibrations. air currents, as well as slow drifts in the birefringent optical fibre. To
ensure a locked phase after the fibre. we have the option of phase-locking the two
frequencies using an OPLL operating in the hundreds of kHz band, relatively
simple compared with an OPLL operating at GHz frequencies. In principle, the
photodetector signal could also be used to stabilise the intensity of the light.
ensuring the stability of the effective Rabi frequency. although this has not been
necessary for our work so far.

Our initial setup. used for the work in reference [63] and part of chapter 9,
was built on a sorbothane isolated optical bench to help reduce vibrations. The
normalised power spectral density (PSD) of the beat signal. centred at 15 kHz,
is the red trace in figure 8.6. The -3dB width of the peak is ~ 0.2 Hz, with clear
noise sidebands shown over a 500 Hz span.

This first incarnation of our Bragg laser-system was located in a standard
physics laboratory full of typically (acoustically) noisy equipment such as power
supplies. In particular, we found that acoustic noise readily coupled into our
system, and to this effect, have recently moved the experiment and Bragg system

into a purpose-designed low noise environment. The laboratory has been refur-
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Figure 8.7: Photographs of our new acoustically isolated laboratory. showing the two air-
floated optical tables (left image). and the secondary isolation enclosure around one of the

tables (right image).

bished with acoustic isolation on all walls and the ceiling. This room houses a
second acoustically isolated enclosure, within which we place our air-floated opti-
cal table (see figure 8.7). All power supplies, and nearly all electronic equipment
is located outside the laboratory in our control room.

The Bragg laser-svstem is now housed directly on the air-floated table, and
the black trace of figure 8.6 shows an equivalent beat signal measurement for
the system in the new environment. In this case. the -3dB width is < 10 mHz,
limited by the Fourier resolution (see inset) and more than an order of magnitude
narrower than in the noisier lab environment. There is also a clear passive reduc-
tion in noise by as much as 4 orders of magnitude, with essentially no discernible
noise features beyond 5 Hz over the full 100 kHz bandwidth of the measurement
(not shown). The phase noise is -107 dBe¢/Hz at 85kHz from the carrier for the
unstabilised setup. For comparison, a state-of-the-art active phase-lock between
two titanium sapphire lasers achieves -138dBc¢/Hz at 1 MHz from the carrier
[155].

To investigate the relative-phase stability further, we have simultancously
measured the beat signal from the photo-detector and the reference signals from
the DDS on a deep-memory digital sampling oscilloscope (DSO) (LeCroy Wa-
veRunner 44Xi-A [151]). The electronic setup for this measurement is given in
figure 8.8. The two DDS channels are driven at 80.0MHz and 79.9MHz re-
spectively, and their outputs split evenly with a power-splitter (Mini-Circuits
ZSC-2-1). One frequency pair is sent to the AOMs of the Bragg laser-system,

and the pair other mixed down (Mini-Circuits ZAD-6) producing sum and dif-
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corresponds to a relative-phase shift of 1rad/m. In our setup, the lasers propa-
gate around 20 cm from the first PBS to the second PBS. In reference [182). a
variation of the refractive index of 107%/K is measured at standard temperature
and pressure. Thus. relatively modest in variations the ambient environment can

explain the relatively large phase drift in hgure 8.9.
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Figure 8.9: Relative-phase noise analysis for the Bragg laser-system. (a) Is the relative phase
plotted as a function of time (red). including a polynomial fit to the trace (black). The same
data is plotted in (b) with the polynomial fit from (a) subtracted. The phase PSD is calculated

and shown in (¢) for (a) and (b) respectively.

We estimate the result that would be obtained by locking out these slow drifts
with a modest bandwidth OPLL by fitting and subtracting a polynomial from
the data in (a). The fit is shown in black, with the subtracted result presented
in (b). The phase-PSD of the data in (a) and (b) is colour-coded and shown in
(¢). The measured spectrum is unremarkable, with mild features around 2-3 Hz:
representative of the slow drift in (a). The estimated PSD for locking out the slow
drifts indicates a suppression of noise below 1 kHz: more so at lower frequencies.

The residual phase-noise, integrated across the entire spectrum is 3.4 x 1072 rad?
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Figure 8.10: Examples of Bragg diffraction with our Bragg laser-system. Left: a 2hk Brage
mirror of BEC with an efficiency of 93%. Centre: an 8hk Bragg beamsplitter of a BEC. Right:
five consecutive 2hk Bragg mirrors of 90% efficiency each. giving a total efficiency of 70% for
the effective 1085 mirror. The BEC has a momentum width of < 0.14k in all images. and red

represents a higher atom density.

as cach pulse targets a Bragg resonance with a different initial momentum (in
the laboratory frame). The image on the right of figure 8.10 gives an example
of such a mirror, showing five consecutive first-order Bragg pulses. Each step is
~ 90% efficient. giving an overall efficiency of 70% for a 10k mirror. Because
of our power limitation, this is more efficient than what is possible for a single
fifth-order diffraction pulse. The draw back is that the effective pulse-time for the
Bragg mirror is increased. Furthermore, if higher laser power was available, then
the fundamental diffraction limit is only set by the atomic cloud’'s momentum
width (see chapter 10 and [78]), and multiple-pulse schemes will always result in

a lower efficiency.

In very recent work, we have developed a frequency doubled. narrow linewidth.
780 nm fibre-laser system with over 11' W of power available for the Bragg beam-
splitter [184]. Assuming a 1/¢* radius of 7.5 mm, this gives a peak intensity of
~ 10W/em®. A one-photon detuning of 20 GHz would then result in a sponta-
neous emission-induced atom loss of 1% for a 20 us pulse, giving a two-photon
Rabi frequency of ~ 600w,. Based on our theoretical work (again, sce chapter
10 and [78]). we expect to be able to achieve at least an n = 21 (i.e. 42hk LMT)

Bragg mirror for a BEC, with an efficiency of ~ 90% for a single Bragg pulse.
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sensitivity for 7 = 100 ms as a function of the expansion time. Importantly, as T
increases phase diffusion quickly becomes negligible compared with the current
state-of-the-art precision due to the rapid decrease in density. It should also be
noted that the above result is an upper bound, as it assumes the spatial overlap of
the interferometer states is essentially zero for the entire interferometer sequence.
While they are well overlapped, the phase diffusion rate is significantly lower.
Very recent work by Jamison et al. has comprehensively investigated the
effects of atom interactions in free-space BEC interferometers, and also concludes
the atomic interactions are "not a roadblock™ for high precision measurement

with BEC inteferometry [64].

9.4 Bloch Oscillation-Based LMT

The phenomenon of Bloch oscillations describes the oscillation in both the mo-

mentum and the position of a particle accelerating in a periodic potential. [t
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Figure 9.4: Bloch oscillations in the band structure of an optical lattice. After Cladé [186].

where V,, is the band-gap energy at the avoided crossing in the nth band. and
ay the lattice acceleration. [If this condition is not met, atoms can undergo
diabatic transitions to higher bands, inercasing their energy in the lattice frame
or equivalently remaining stationary in the laboratory frame. It is this feature
which enables operation of a beamsplitter as follows.

A Bragg beamsplitter pulse is first applied. splitting the cloud into two mo-
mentum components. The Bloch lattice is then adiabatically ramped on such
that one of these components has approximately zero guasimomentum. The
other state is therefore loaded into a higher band. Because the avoided-crossings
at higher bands correspond to higher-order Bragg resonances. the band-gap en-
ergy is smaller due to a weaker coupling for a given laser power (i.e. lattice
depth). Thus it can be made the case that criterion (9.7) is well satisfied for
only the stationary component, allowing selective acceleration of just that com-
ponent. This increases the relative momentum between the two states, resulting
in LMT beamsplitting. We have found that a 44k initial Bragg beamsplitter is
sufficient to accelerate just one of the momentum states. In this way, atoms can
be accelerated and decelerated in order to close the atom interferometer.

We have achieved a fringe visibility of (24 £ 4)% in a Bloch-based LMT inter-
ferometer: the highest yet observed to the best of our knowledge. The full pulse

sequence is highlighted in figure 9.5(a). as well as the space-time diagram. After
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Figure 10.1: Raman-Nath diffraction vs. Bragg diffraction. Left: Raman-Nath diffraction
using a (short) 10 us pulse with relatively high intensity. Centre: 4th order diffraction using
a Gaussian pulse with 7 100 ps. Right: 5th order diffraction using a Gaussian pulse with

7 = 100 us, which is substantially more lossy. The Bragg pulses are 7/2 pulses.

and lossy Bragg diffraction on the right (n = 5). Our goal is to investigate the
effect of momentum width on the efficiency of Bragg diffraction. Notice that for
10AK diffraction, the loss is more significant. As we shall sce. this is the result of

insufficient laser intensity.

10.1.3 Fidelity of a 7 Pulse

Assuming that the initial clond has a momentum distribution lv(k)]* centred at

the nth order momentum resonance p = —nhk. its state can be written as:

[Y) = /:'(;.‘H -n + k)hEYdE (10.15)
where ¢(x) is assumed to be real and is normalised to 1. [deally. nth order
diffraction would result in the entire distribution centred at p = —nhk to be

mapped onto the same distribution centred at p = +nhk; i.c. the ideal state is:

|Videat ) /l'(f.“llln b R)hE)dR (10.16)
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Figure 10.2: Optimised fidelity for a Bragg mirror pulse as a function of the momentum width
for different n. Inset: Curves for larger values of n. Points represent numerically simulated
results, joined by lines to guide the eye. From [78].

fixed atom number). Although in the limit of a two-level system. this could
be compensated for by increasing the effective Rabi frequency to broaden the
transition, optimised diffraction in the quasi-Bragg regime inherently involves
multiple levels, and increasing the Rabi frequency further reduces the fidelity
due to loss to other momentum states,

Perhaps more interestingly. for a given momentum width the maximum fi-

delity varies little with n for n > 2.°

However, in order to reach the optimum
fidelities our simulations show that the required two-photon Rabi frequency scales
as . x n®, as given in figure 10.3. This also agrees with the scaling of equa-
tion (10.13) in the limit of large n. and essentially highlights that the optimum
occurs for a constant nth-order Rabi frequency. Furthermore. it highlights that
the quasi-Bragg regime occurs when the potential energy term (x €2,) is on the
order of the kinetic energy term (x n?) in the Hamiltonian.

. : v . 2
Ist order diffraction is subtly different from all other orders in that there are no momentum states
between the initial and final momentum states,
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Figure 10.3: Optimised Rabi frequency (left) and Gaussian pulse duration (right) as a function
of order for a Bragg mirror pulse. Points represent numerically simulated results, joined by
lines to guide the eve. From [78].

The analytic solution (10.11) can give insight into this result; namely that
although the transition width decreases with n, this can be compensated for by
an increase in the nth order Rabi frequency, which broadens the transition. This
may at first scem to contradict the earlier statement that one cannot increase the
Rabi frequency indefinitely due to loss to other momentum states. While this
remains true, higher order diffraction can tolerate a large Rabi frequency, as the
adjacent momentum states are energetically further separated for larger n due to
the quadratic dispersion relation. This is also highlighted by condition (10.10).

Thus, assuming that we have ample laser power available, the best mirror
efficiency is barely affected by increasing n. As a final point of comment, the clear
points of deviation from the general trend of the curve in figure 10.2 correspond
to momentum widths where the system begins to optimise in a slightly different
regime which involves more Raman-Nath-like diffraction. This is because the
cloud’s momentum width becomes large enough that off-resonant transitions can
actually lead to a higher population in the target state than more Bragg-like
transitions. We have verified this picture by observing the occupation in other
momentum states, which undergoes a distinet rise around these points. It is also
apparent in the optimised pulse times given in figure 10.3, where for a given n
(e.g. n = 2) there is a sudden drop in the pulse time with increasing momentum
width.

We have compared these theoretical results to several state-of-the-art systems
in the literature. In work by Miiller et al. [85]. mirror efficiencies between 85

90% were reported for Bragg diffraction with n < 9. Their source momentum
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function of momentum width (as in figure 10.2). now assuming that €, < 20.,.
Although this is a relatively modest Rabi frequency, we use it for illustrative
purposes as the simulations are much simpler in this case. We find that for
n < 4. the optimised fidelities from figure 10.2 are achieved as optimum Rabi
frequency is always less that 20w,. For n > 4, the optimum fidelity cannot be
reached, and falls off sharply with n for a given momentum width. Decreasing
the momentum width in this regime improves the fidelity for a given n. again
suggestive that Bose-condensed sources could be advantageous when considering
the effects of finite laser power and minimising spontancous emission. This result
is also captured by the effective two-level model discussed ecarlier [see equations
(10.11) and (10.12)].

In figure 10.5, we present experimental data which gualitatively verifies the
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Figure 10.5: Bragg diffraction for increasing order with a near constant nth order Rabi
frequency. A 100 ps Gaussian Bragg pulse is applied for cach order. The intensity of the
Bragg laser is inereased in order to maximise the number of diffracted atoms. We see that
the diffracted cloud has a decreasing momentum width in the direction of the Bragg beam for

increasing order

effect of a bound two-photon Rabi frequency. 100 gs Gaussian Bragg pulses are
applied to a BEC after allowing for ballistic expansion (~ 12ms). Absorption
images are taken for Bragg orders ranging over n = 1 — 4. We increase the
laser intensity for increasing order. in order to maximise the number of diffracted
atoms. In the sense limit of two-level system, this is equivalent to maintaining a
constant nth order Rabi frequency. Note that there is no discernible population
of other momentum states, indication highly Bragg-like diffraction. There is a
clear reduction in the momentum width (along the Bragg laser beam) of the
diffracted clond, as well as the number of diffracted atoms., for increasing order,

in qualitative agreement with the theoretical results,

10.1.5 Mach-Zehnder Interferometer: Comparison to Experiment

In the paper by Szigeti et al., we also investigate the effects of momentum width
for a full Mach-Zehnder /2 — 7 — #/2 pulse sequence. Specifically. we used
the SNR of the interferometer (assuming a shot-noise limit) as a figure of merit.
and looked again in the regimes of bound. and unbounded Rabi frequency. The
optimised mirror pulse values were used for the mirror in the pulse-sequence, and
the optimisation was performed over the beamsplitter pulse parameters. The
results generally reflect those for the mirrorn analvsis. and we therefore will not

go into detail here. The interested reader should see the article [78].
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Optical Beam

Figure 10.7: Schematic representation of the effects of wavefront distortion. Black lines
represent atomic trajectories through the laser beam with different horizontal velocity compo-
nents. Red-dashed lines are distorted wavefronts of the beamsplitter laser beam. As a result
of different horizontal velocities, cach trajectory samples a different phase at each light-pulse
(represented by the dotted horizontal lines). Note the figure is not to scale.

one typically averages spatially over the ensemble during detection of the atoms.
this phase information is averaged over. leading to a reduction in the observed
fringe contrast, as well as a possible systematic phase shift in the fringes. The
systematic phase shift has been discussed at length in several articles [9, 88, 89,

A Thermal vs. a Bose-Condensed Source

We have performed a direct experimental comparison of an ultra-cold thermal
cloud and a BEC in our atomic gravimeter. To produce the thermal cloud, we
cease evaporation in our optical trap just above the critical temperature for con-
densation. In this way, we produce an ensemble at a temperature of ~ 100 k.
Figure 10.8 gives a comparison of fringes for the BEC and thermal source where
we make every effort to ensure that the system is otherwise identical. In partic-
ular. we use an identical velocity-selection pulse for cach sequence. The fringe
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Figure 10.9: Distribution
dependent  Coriolis  phase
shift. (a) Represents a sym-
metric  distribution in the
horizontal velocity, and (b)
an asvimmnetric distribution.
The red area corresponds
to a negative rotational
phase-shift, and the blue
arca a positive phase-shift.
Therefore, when averaging
over the distributions the

] dhase shifts cancel for (a).
O Uy phase shifts « or |

but not for (b).

with larger T are therefore more susceptible in general.

For thermal interferometers, it is often stated that ‘each atom interferes with
itself.” much like a Young's double slit experiment performed with single photons.
Each atomic wave-packet is characterised by its thermal de Broglie wavelength,
which is proportional to 1/7"%. Thus hotter thermal sources will have smaller
coherence lengths and will suffer more from this effect. A BEC on the other
hand. with all atoms indistinguishable and in a single mode, has a much larger
coherence length determined only by its physical size. Therefore a BEC will be
less susceptible to this effect.

Very recent work by Lan ef al. has experimentally investigated this effect in
detail, and they have used an active tip-tilt mirror to compensate for rotation
of the Earth; improving their contrast by 350% [90]. Their work clearly demon-
strates that a BEC will be less susceptible to this effect than a thermal source.,

possibly even eliminating the need for a tip-tilt mirror.
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Fig. 3. (Color online) Self-heterodyne beat signal obtained for an
ECDL locked to the 5°S, .F = 2 — 52P, ,F - 3 transition using
an error sagnal produced by a 100kHz external PZT drive fre-
quency. The beat signal is measured on an RF spectrum analyzer
using a 20 ms sweep time averaged over 100 sweeps, and thus re-
presents a 25 integration time. The linewidth for this integration
time is calculated from the beat signal to be 126 6kHz. A video

bandwidth and resolution bandwidth of 10kHz are used

4. Conclusion

Phase modulation produced by a PZT-modulated
mirror has been demonstrated to be a practical meth-
od for locking a diode laser to an atomic transition. It
results in a laser with linewidth and stability desir-
able for experiments in atomic physics (e.g., for main-
taining magneto-optic traps and probing Bose-
Einstein condensates). Being relatively inexpensive,
easy to implement, and robust, it yields true zero
crossing error signals, allowing lasers to be locked
for many hours at a time. Although demonstrated
for an external cavity diode laser here, PZT locking
via saturated absorption can be applied to other laser
systems as well as other atomic species.
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