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Abstract 

This thesis presents experimental and theoretical work investigating the appli-

cation of Bose-condensed atomic sources to atom interferometer-based inertial 

sensors. In particular, we focus on gravity sensors, or gravimeters, w ĥich have 

applications in fundamental physics, Earth sciences, mineral exploration, and 

navigation. Using proof-of-principle experiments, and theoretical analyses, we 

show that Bose-condensed sources will be critical in the next generation of these 

devices. 

We first investigate the the production of atomic sources and beamsplit-

ters/mirrors. We design and implement a straightforw^ard and passively stable 

laser system for driving Raman transitions between the hyperfine ground states 

of This is used as an outcoupler for atom-lasers, and is compared to alter-

native methods STich as radio frequency outcoupling. We find that our Raman 

outcoupler produces the highest brightness atom-lasers from a magnetically con-

fined Bose-Einstein condensate (BEC). The same laser system can be reconfig-

ured as an atomic beamsplitter, which we show operates at the atomic shot-noise 

limit using a BEC-based free-space Ramsey atom interferometer. Atom-lasers 

are also outcoupled from an optical trap, and we show that their divergence is 

Heisenberg-limited within experimental uncertainty. 

Large momentum transfer (LMT) beamsplitters offer a clear path for improv-

ing the sensitivity to inertial forces. We design a laser system for Bragg diffracting 

atoms as an LMT technique, which we use for our beamsplitters and mirrors in 

a Mach-Zehnder gravimeter. We characterise the laser system's relative-phase 

noise, and highlight recent improvements. We are able to efficiently diffract 

atoms with up to lOhk momentum transfer in a single coupling pulse. The same 

versatile laser system is also capable of driving Bloch oscillations as an LMT 

technique. 

Using these tools, we construct the first Mach-Zehnder atomic gravimeter 

based on the interference of a BEC. We observe a high interference-fringe contrast, 

close to the theoretical limit for Bragg-based beamsplitters (see below). Using 

third-order Bragg diffraction, we increase our sensitivity to gravity to 1 part 

in 10 .̂ We also use Bloch oscillation-based LMT to increase our sensitivity, 

achieving a high fringe contrast compared with previous work. However, we ftnd 

that the contrast decays rapidly when trying to further increase the interferometer 

space-time area. This is likely caused be systematic phase shifts not present for 

Bragg diffraction, and it would seem that Bragg diffraction is the preferable LMT 

technique. 



Using a simple yet robust incan-ficld analysis, wc estimate the atomic interac-
tion induced phase-diffusion in a frec-space interferometer such as a gravimetcr. 
Wc find that, contrary to an often held view, atom-atom interactions do not limit 
the applicability of Bosc-condensed sources to free-space atom interferometers for 
very reasonable experimental parameters. 

We conclude by investigating the effect of momentum width in inertial sensors. 
Using a comprehensive theoretical model, we optimise the efficiency of Bragg 
mirror pulses, and find that there is a fundamental limit to the mirror efficiency 
set by the momentum width of the source (along the direction of diffraction). 
Thus, a narrow momentum width is required in order to improve the efficiency. 
When accounting for a limited coupling strength (by e.g. laser power), we find 
that efficiency is strongly reduced for increasing diffraction order, and can only 
be recovered by using a narrower momentum width source such as a BEC or 
atom-laser. This is supported by experimental results. 

The effect of momentum width is also pronounced in the direction transverse 
to the beamsplitter laser. By comparing a BEC and an ultra-cold thermal source 
in our gravimeter, wc find that the BEC gives superior fringe contrast in an oth-
erwise identical setup. We use a simple model of wavefront errors to account 
for this, and highlight that narrower momentum widths can lead to further im-
provement in the contrast, and a reduction in systematic shifts. Furthermore, 
the Coriolis force results in additional systematic phase shifts, which depend on 
the transverse momentum width. Thus we again conclude that narrow Bosc-
condensed sources will help reduce these systematic shifts. 
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Chapter 1 

Introduction 

From apples to atoms... 

IT is hiinibling to remember that it is over 250 years since Sir Isaac Newton, 
inspired by an apple falling from a tree in his orchard [1], made the mental 
leap to conjecture that the same force which caused this apple to fall also 

held the Moon to the Earth. This stimulated him to develop his Law of Grav-
itation, and led to the principle that all objects fall with the same acceleration 
irrespective of their mass, as observed by Galileo Galilei. Over 250 years ago, 
these scientists understood gravity as well as many people do today. 

In reality, we still measure gravity by dropping a proverbial apple a falling 
test mass whose trajectory we measure through space-time. Over two centuries 
have, however, led to a vast improvement in our measurement precision. With 
the development of the optical laser and atom interferometers over the last 50 
years, we have far superior rulers, and far superior clocks with which to make 
such a measurement This thesis investigates the question of how using a Bose-
Einstein condensate (BEG), the matter-wave analog of an optical laser, can allow 
for improved precision in an incrtial sensor such as a gravimeter. In particular, 
BEGs should enable us to use even more precise "rulers" to measure the trajectory 
of falling atoms, and reduce several systematic effects which compromise the 
accuracy of the measurement. 

Mankind's most precise instruments are those that measure space and time. 
At the heart of these measurement devices is the phenomenon of wave interfer-
ence. For example, the most precise rulers to date are optical interferometers, 
built for the detection of gravitational waves using very long baseline interferom-
eters such as the Laser Interferometer Gravitational Wave Observatory (LIGO). 
This device measures distance with a sensitivity up to AL/L ~ [2]. On 

the other hand, the most precise keeper of time is an atomic clock. With its 
ceascless ringing, caesium is an oscillator that defines the International System 
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of Units (SI) sccond at the level of 1 part in [3, 4. 5]. Precise nieasnrement 
of the caesinni resonance at 9.192.631,770 Hz again relics on interference, in this 
case the interference of matter-waves in an atom interferometer. 

1.1 Atom Interferometers as Inertial Sensors 

By 1992, Kasevich and Chn had pioneered work on light-pulse atom interferom-
eters [6, 7] which spawned a field of research that now provides (in some cases) 
the highest sensitivity measurements of inertial forces. Such measurements in-
clude that of gravitational acceleration [7, 8, 9, 10, 11], and the related field 
of gravity gradiometry [12, 13]; as well as rotations such as that of the Earth 
[14, 15, 16, 17]. Inertial sensitivity has in turn led to the precision measure-
ment of fundamental constants, such as the fine-structure constant (a), through 
measurement of the photon-recoil energy [18. 19. 20], and Newton's gravitational 
constant (G), through measurement of a gravity gradient [13. 21], In the case 
of a, recent improvements to the work of Clade et al. provide a contribution to 
the CODATA value with a precision of 6.6 x 10-^° [20], This is within a fac-
tor of two in precision of an independent measurement of the electron magnetic 
moment, which currently provides the highest precision measurement of Q [22]. 
In this thesis, we focus on atom interferometers as gravity sensors {gravimeters), 
although most results apply equally to other inertially sensitive configurations 
for both fundamental and practical applications. 

1.1.1 Applications of Gravity Measurements 

Practical Applications 

The measurement of gravity has widespread practical applications. Earth scien-
tists use absolute as well as differential gravity measurements to peer beneath 
the surface of the Earth, gaining valuable information about density structure 
and changes to the geoid due to tectonic plate movement, magma flows, volcanic 
activity, and tidal forces. Recent work, which has a direct impact on Australian 
government pohcy, has monitored groundwater variation in the Murray-Darling 
basin using space-based gravity measurements from the GRACE (Gravity Re-
covery and Climate Exi^eriement) satellite mission [23 . 

Resource industries also benefit from gravity measurement, since it allows 
mining companies to better identify mineral deposits. Mineral explorers will 
typically look for anomalous gravity gradients caused by high density deposits of 
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ore, and these nicasiirenients can readily be done over tens of kilometres allowing 

effective and efficient initial surveys. The measurement of anomalous gradients 

is also of interest to dcfence and security agencies. 

Also worth noting is that the precise measurement of accelerations (includ-

ing rotations) is also of interest for dead reckoning navigation. This again has 

applications in defence, but also for space travel and exploration, where minute 

uncertainty in orientation can lead to a very large uncertainty in the final desti-

nation. 

Fundamental Applications 

The measurement of gravity is also of great importance to fimdamental physics. 

The weak equivalence principle (WEP) states that inertial and gravitational mass 

are identical, and therefore all bodies fall with the same acceleration regardless of 

their mass. However, the attempt to reconcile General Relativity with Quantum 

Mechanics often leads to small violations of the WEP due to the prediction of new 

interactions that violate the universality of free-fall [24]. The WEP has currently 

been tested to the level [25, 26], with predicted violations at the 

level [24], Improved precision in atomic gravimcters coidd provide the sensitivity 

required for these tests. They also have the advantage of using identical test 

masses: individual atoms. Recent proposals aim to reach a sensitivity of 

[27]. In somewhat related work, there have been projwsals for building atom 

interferometers for detecting gravitational waves [28, 29]. Miiller et al. have 

also recently highlighted that atomic gravimcters arc cquivalently a test of the 

gravitational red shift [30, 31, 32, 33], although this has been the subject of 

controversy [34] and rigorous debate over the last two years [35, 36, 37, 38 . 

The Watt Balance project is a proposal to redefine the kilogram, which is 

the only remaining SI unit based on an artefact. The idea is to balance a test 

mass' gravitational weight using an electric currcnt. Coupled with a high preci-

sion measurement of the local gravitational force, this allows the kilogram to be 

defined in terms of electrical units [39]. The target precision is < 10"®, which 

requires an identical or better precision in the gravity measurement. An atom 

interferometer is a primary candidate for this task [40 . 

1.1.2 A tom ic Gravimeters 

The basic operation of a light-pulse atom interferometer is in principle the same 

as that of an optical interferometer, with the roles of matter and light reversed. 
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Optical 
Ruler standing wave Gravimeter Space-time trajectories 

F i g u r e 1.1: Basic operation of an atom interferometer, configured as a gravimeter. An atomic 
cloud falls freely under gravity through an optical standing wave, which forms an "optical ruler" 
with a precision proportional to its wavelength. Three pulses of the standing wave are applied, 
separated equally in time and with appropriate durations to beamsplit. reflect, and recombine 
the atomic wavepackets as shown in the space-timc diagram on the right. The phase of the 
laser at each pulse is written onto the atomic state, encoding distance and time information 
onto the atomic state. 

Laser pulses are used to beamsplit, rcflect, and recombine atomic wavepackets 
tising the absorption and emission of photons. This imparts momentum to the 
atoms, as shown in figure 1.1. In this example three pulses are applied, sepa-
rated equally by time T and with appropriate durations (7r/2 — tt — 7r/2) for a 
beamsplitter, mirror, and beamsplitter operation respectively, producing an ana-
log Mach-Zchnder interferometer as shown to the right. At each pulse, the phase 
of the laser is transferred to the atomic state, encoding information about the 
atomic trajectories through the beam. In the configuration shown, the atomic 
trajectory is (ideally) due only to gravity and the initial conditions, and thus in-
formation about the gravitational acceleration is encoded in the atomic state. At 
the final beamsplitter of the interferometer, the phase information is converted 
to the probability of finding atoms in one of the two motional states, and the 
phase accunuilated due to gravity (or equivalently any uniform acceleration) is: 

$ = 01 + 202 + 03 = - k e • gT^ ( 1 . 1 ) 

where 0j is the optical phase of the ith pulse, hke is the momentum transferred 
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by the bcanisplittcr and is proportional to the laser wave vector, and g the 

acceleration due to gravity. 

Because the laser beam is periodic in space and has a well defined phase, 

with an optical wavelength ~ 500 mn, it effectively forms an "optical ruler" far 

more i)recise than an everyday ruler we might use to measure a falling apple. A 

shorter wavelength laser has finer "graduations" than a longer wavelength laser, 

and the higher the phase-stability of the laser, the more precisely defined are the 

graduations. 

1.2 Bose-Einstein Condensates and Atom Interferometry 

Key developments in the success of atom interferometers have been laser and 

evaporative cooling, which has made ultra-cold atomic sources readily available 

[41, 42, 43]. Cooling an atomic sourcc narrows its momentum width and is 

analogous to spectrally purifying an optical source. Optical interferometers have 

generally benefited from the use of a spectrally pure sourcc, and this was tradi-

tionally achieved by frequency filtering. However, with the advent of the optical 

laser, a high brightness and spectrally pure sourcc of photons became readily 

available, which quietly revolutionised optical interferometry. Although white 

(or thermal) light typically has a higher flux, and white-light interferometers can 

in principle be as sensitive as laser interferometers, a laser is usually preferred 

for its practical advantages such as easier mode matching, greater flexibility of 

design, and a lower sensitivity to misalignment. 

To date, the vast majority of atom interferometers have used cold, yet still 

thermal atomic sources - the direct analog of thermal light. Almost simultaneous 

with the development of modern atom interferometers was the observation of 

Bose-Einstein condensation in dilute atomic gases in 1995 [44, 45]. Predicted by 

Bose and Einstein as an outcome of seminal papers on the statistical mechanics of 

identical bosons [46, 47, 48], this statistical phase of (bosonic) particles occurs at a 

phase-space density higher than ~ 2.612 and results in a macroscopic occupation 

of the ground state in a given system. In this sense, a BEC is the matter-wave 

equivalent of the optical laser, which is a niacroscoi)ic photon population in a 

single ojjtical mode. This motivated several groups to extract atoms from a 

trapped condensate, producing a beam of Bose-condensed atoms now^ known as 

an atom-laser [49, 50, 51, 52, 53, 54, 55]. The analogy with the optical laser even 

extends into the quantum regime, with Ottl et al. showing that atom-lasers have 

a second order correlation function equal to 1 [56], as is the case for an optical 
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laser. 

Given the strong analogy between BECs and optical lasers, an important 

question to ask is: 

Are BECs advantageous as a source for atom interferometers? 

The goal of this thesis has been to take important steps in answering this question 

in the context of inertial sensors. 

1.2.1 A tomic Interactions 

To date, BECs have largely been neglected by the precision measurement and 

interferomctry comnnmity. Perhaps one major hurdle early on was the added 

complexity required to produce a BEC. However, BECs are now an almost 

standard option in any atom optics laboratory. An often-cited argument against 

the use of a BEC is that atom-atom interactions lead to undesirable effccts such 

as systematic shifts [57], reduced mode-matching due to spatial dynamics [58, 59, 

60], and phase diffusion of the many-body wavefunction [61, 62]. This is in fact 

a major difference between optical lasers and BECs; photons do not interact in a 

linear medium. In relatively recent work however, we [63] as well as Jamison et al. 

[64] have independently shown that interactions can be negligibly small in free-

space interferometers such as inertial sensors. Details of our estimate can be found 

in chapter 9. In any case, interactions also have the potential to produce squeezed 

states, which could be used to surpass the shot-noise limited sensitivity of atom 

interferometers. Multiple schemes have been proposed, and proof-of-principle 

experiments have produced squeezing [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75 . 

In particular. Gross et al. have used squeezing to enhance the sensitivity of an 

atom interferometer [72]. Our group has investigated producing useful squeezing 

in large atom number 10®) condensates, and this is discussed in detail in 

[59, 76]. 

1.2.2 A t o m Flux 

Another point of difference between thermal and condensed sources is atom flux. 

The best BEC sources [77] are still a factor of 25 lower in flux than the best ultra-

cold thermal sources [10]. Although this is potentially a factor of 5 in shot-noise 

limited sensitivity, many inertial sensors (in particular gravimcters) are limited 

by technical noise and systcmatics [9]. Furthermore, if flux becomes a serious 

issue, then increasing it is likely a question of cost and engineering, as opposed 
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to a fundamental limitation. 

1.2.3 Momentum Width 

Perhaps the two most compelling reasons to pursue BEC sourccs are (a) that 
large momentum transfer (LMT) beamsplitting can be performed on a conden-
sate with high efhciency (see our work [78]), and (b) BECs have an inherently 
low susceptibility to systematic effects. LMT beamsplitting involves using an 
atom-light interaction in which the effective wave vector [k^ in equation ( l . f ) ] 
is increased. This increases the momentum transferred to the atoms, increas-
ing the phase shift in direct proportion. LMT has already proven crucial in the 
latest generation atom interferometers, such as those for measuring a [20]. The 
proposed gravitational wave dctectors require beamsplitters transferring at least 
100, and up to 1000 photon recoils [28]. To date, the largest momentum transfer 
in an interferometer capable of making a phase measurement has been 24 photon 
recoils [79 . 

One example of an LMT atom-light interaction is Bragg diffraction [80, 81, 
82, 83, 84, 85, 86], which is described in detail in chapter 8. In recent work, we 
have shown that there is a fundamental limit to the diffraction efficiency set by 
the momentum width of the atomic source; with a narrower momentum width 
resulting in higher efficiency [78]. This is in contrast to statements in [87] claiming 
efficiency limits are of a technical nature. Additionally, when considering the 
very realistic scenario of finite laser power, a narrow momentum width is again 
favourable, particularly for very large momentum transfer beamsplitters. This 
work is highlighted in chapter 9. BECs have momentum widths 5-10 times smaller 
than typical thermal sources, while atom lasers have up to 100 times narrower 
transverse momentum width (see chapter 5). 

Wavefront Errors 

From a practical perspective, there arc several advantages to condensed sources 
for gravimeter-typc configurations (including a measurements, and gradiome-
ters). In particular, the transverse momentmn relative to k, can lead to sys-
tematic shifts and a reduction in the interference fringe contrast. For example, 
aberrations in the beamsplitter laser lead to trajectory-dci)endent phase shifts 
across a cloud [88, 89] (also see chapter 9). Hotter clouds have a larger spread 
in trajectories, which are typically averaged over during detection leading to a 
reduction in contrast and systematic shifts. In chapter 9 and reference [63], we 
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perform a clircct coini)arisoii between a thermal and BEC sonrce. showing sig-

nificant improvement in contrast for a BEC in an otherwise identical system. 

Wavefront errors have long been known as a problem [8], and are a major source 

of uncertainty in some state-of-the-art devices [20, 88, 89] 

Rotat ion and the Coriolis Force 

Until this point we have discussed sensors designed to measure gravity. Another 

important class of sensor aims to measure rotations. Atom interferometer gyro-

scopes are operated with the atoms travelling perpendicular to the beamsplitter 

laser. Thus transverse momentum components in a gravimeter lead to systematic 

rotational phase shifts on Earth due to the Coriolis effect. Again, the size of this 

effect will increase with the momentum width of the atomic source, as well as any 

uncertainty in the initial velocity. More details are given in chapter 9. Suffice it 

to say here that the symmetry of the momentum distribution is also important. 

Bose-condensed sources arc not only narrower in momentum, but because their 

state is defined by their trap, they arc typically more symmetric than laser-cooled 

sources, and have more precisely determined initial conditions for free-fall. 

The Coriolis force has yet another consequence. Rotation of the Earth ro-

tates kp, which results in a small displacement between the two wavepackets at 

the final beamsplitter. This is analogous to a mode mismatch in an optical inter-

ferometer. Because the thermal de Broglie wavelength of the atoms characterises 

the wavepacket's spatial extent, colder sources arc less susceptible to this effect, 

as recently pointed out in [90]. 

These effects are beginning to limit atom interferometers, and several groups 

arc now cither starting to use BEC [63, 87], or plan on doing so in the near future 

[9f]. Combined with the aggressive proposals for future sensors, it is the argument 

of this thesis that Bose-condcnsed sources are a compelling alternative to thermal 

sources in the next generation inertial sensors based on atom interferometry. This 

thesis presents clear proof-of-principle interferometry experiments, as well as the 

development of the highest brightness atom lasers to date, and shot-noise limited 

atomic beamsplitters. 

1.3 Publications 

The following peer-reviewed publications have resulted from work within, as well 

as collaborative work undertaken during this thesis. 
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1.4 Structure of this Thesis 

The thesis is structured into three parts which generally follow on from one 
another. This is summarised by the flow diagram in figure 1.2. 

Part I gives the necessary theoretical background on atom-light interactions 
and basic atom interferometer theory. A reader experienced in atom-light inter-
actions and interferometry can safely skip part I, and simply use it as a reference. 
Part II covers our interferometric tools: atomic sources, beamsplitters, and mir-
rors, and Part III presents results from our BEC-bascd gravimeter, and discusses 
key advantages of Bose-condensed sources including an experimental comparison 
to a thermal source. 

Chapter 2 describes a two-level atom in a classical light field. The treatment 
is slightly more comprehensive than connnon treatments, explicitly including the 
external motional states and highlighting the change in momentum of the atom 
due to absorption or emission of a photon; a crucial aspect of an atomic inertial 
sensor. 

Chapter 3 then uses the two-level results to describe interferometry with two-
level systems. In particular, Ramsey and Mach-Zehndcr interferometers are dis-
cussed. The phase shift due to gravity is derived. 

Chapter 4 describes the three-level atom, which allows for Raman (or multi-) 
photon transitions. These transitions arc critical in enabling the coupling of long-
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F i g u r e 1.2: Thesis flow diagram. 
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lived states, and a significant inoincntuin transfer, both of which are reqnired for 
an incrtially sensitive device. 

Chajjter 5 gives tlie theoretical background for Bosc-condensed sources in-
cluding atoni-lascrs, and in particular derives their inoincntum width. It also 
describes both of our apparatuses for producing BECs. 

Chapter 6 describes a Raman laser-system for coupling the hyperfine ground 
states of ^'^Rb. The system can be operated as an atom-laser outcoupler. or as 
an atomic beamsplitter and both configurations arc characterised. In the case of 
beamsplitting, the coupler is used for a Ramsey interferometer which is able to 
reach the atomic shot-noise limit. 

Chapter 7 presents a comprehensive comparison of different atom-laser out-
couplers, including radio-frequency (RF) outcouplers for magnetically confined 
BECs and outcoupling from an optical trap. It is shown that our hyperfine Ra-
man coupler produces the highest brightness atom-laser from magnetically con-
fined samples, and that optical outcoupling produces a near Heisenberg-limited 
atom-laser beam. 

Chapter 8 describes Bragg diffraction and our Bragg laser-system, which is 
used in our BEC gravirneter for LMT beamsplitting. Its noise characteristics 
arc presented, including some recent improvements and proposals for further 
improvement. 

Chapter 9 presents results from our proof-of-principle BEC gravimeter, which 
uses LMT beamsplitting to enhancc the sensitivity. A straightforward model is 
used to estimate the effect of atomic interactions in such a device, which we find 
to be negligible. 

Finally, chaptcr 10 discusses, in detail, the effects of momentum width in 
inertial sensors, highlighting the advantages of a narrow momentum width source. 
We also present results from an experimental comparison of a condensed source 
and a thermal source in our atomic gravirneter. 

The thesis then concludes with a summary of the key results, and a discussion 
of future directions and possibilities. Also note that the thesis is generally written 
in the first-person plural 'we' to keep in line with modern scientific writing style; 
highlighting the group-based nature of modern research. Except where explicitly 
stated otherwise, all material is the author's original work. 
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Chapter 2 

The Two-Level Atom 

The interaction of an ensemble of atoms with a laser beam lies at the heart 

of modern atomic physics and atom interfcrometry. Taking advantage of these 

interactions allows us to cool. heat, guide, trap, accelerate, probe, beamsplit, and 

reflect atoms. Fundamentally, atom-light interactions give us our deepest insight 

into atomic structure, resulting in a myriad of applications both within and 

external to atomic physics. In what follows, we provide a theoretical treatment of 

the interaction of monochromatic radiation with a two-level atom, which provides 

a foundation for describing many of the phenomena presented in this thesis. 

2.1 A Two-Level Atom in a Classical Light Field 

The two-level atom model is useful as it is often possible to approximate a nuilti-

level atom as two-level for particular coupling configurations, and the simplest 

description of atom interfcrometry is that involving the interference of just two 

levels (see chapter 3). In chapter 7, we will discover that effective two-level atoms 

produce the highest flux atom lasers with clean beam profile, and finally when 

considering LMT beamsplitting in chapters 8 and 10, our goal will be to best 

reduce a nnilti-level system of momentum states to an effective two-level system. 

Consider an atom in free space, with a centre-of-mass momentum p.^ and two 

electronic eigenstates. We label these states as |e. Pe) and I*;. Pg) such that:^ 

,.2 
+ (2.1) 

and likewise for |e. Pe), with eigenvalue ^ + kje- Choosing the zero of energy to 

be ccntred between uû  and ujg. wc have uJe = -uJg = t^o/2. The internal energy 

' p is assumed to be non-relativistic in all that follows. 

p) represents the direct product |e> ® |p). and likewise for p). 
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Figure 2.1: Electronic energy level diagram for a two-level atom. 

level diagram of this atom is given in figure 2.1. The atomic Hamiltonian can be 

written as: 

Ha = 
LV 2m ^ 2 / 

|e,p)(e,p| + d^p (2.2) 

Consider now the atom, with centre-of-mass position and momentum op-

erators r and p respectively, interacting with a classical electromagnetic wave 

E(rL, f ) = Eocos(cijf — k • r^ + 0), where Eg is maximum field amplitude vector, 

k the wave vector, uj the angular frequency, and 0 an arbitrary phase. Naturally, 

[f, p] = ih. The clectric field at the atom's position is then given by the operator 

E(r , f ) . Assuming an electric-dipole interaction, the Hamiltonian for this system 

is: 

H = 
p2 

— (|e,p)(e,p| + |c/,p)(5,p|) + " l5,P)(i/,Pl) 

+ ^ ( | e . p ) ( e , p | - | 3 , p ) ( 5 - p | ) d^p + d - E ( f , f ) 

(2.3) 

where d = efg is the electric-dipole moment operator^ and Aq = û o — as shown 

in figure 2.1. We assume an atom with no permanent electric-dipole moment.^ 

^Here, e is the electronic charge, and should not be confused with the label in |e. p). Furthermore, 

te is the electron position operator, relative to the atomic nucleus and should not be confused with the 

centre-of-mass coordinate r. The former acts on the space of je), whereas the latter acts on the space 

of !P). 

•^Although there are efforts to observe time reversal and parity symmetry violation through the 

measurement of a permanent electric-dipole moment (PEDM) in atoms such as [92, 93], these 



§2.1 A Two-Lcvcl Atom in a Classical Light Field 17 

This results in cither even or odd parity electronic wavcfunctions, and therefore, 

the diagonal matrix elements of the electric-dipole moment operator are zero. 

The dipole coupling term can therefore be written as: 

CXD 

CXD 

-oo 

+ p - hk){g. p| + I3, P - p|)] d^p 

(2.4) 

where in the last step, we recognise that e''̂  '" is the generator of translations 

in momentum space [94]. Q = de^^J jy defined as the Rabi frequency, with 

dfij; = (e|d|(/). We sec that the electric-dipole interaction couples the electronic 

states |e) <-> and momcntimi states |p) ^ |p±/ik). It is perhaps obvious 

at this point that in coupling to a different momentum state, the resonance 

frequency will not be UJQ, but should also take into account the change in kinctic 

energy, suggesting that Aq is an approximate detiming. This result will shortly 

be derived explicitly. 

Consider now any general state of the system expanded in the electronic-

momentimi basis: 

00 

1^ (0 )= y Ce(p,0|e,p) + c , (p ,0 l5 ,p) ( l 'p (2-5) 

-00 

with normalisation given by: 

\ce{p,t)\' + \c,{pj)fd 'p = \ (2.6) / 
Thus we can interi)ret |cg(p,OP ancl |ce(p,OP as ^lic probability of finding an 

atom in the ground or excited state at momentum p and time f respectively. 

efforts provide only an upper bound on the PEDM and the majority of elements are not known to 

possess an PEDM. Furthermore, the alkalis, which are the most common elements in cold-atom physics, 

have a single valence electron in a spherically symmetric s-state and therefore have no PEDM. 
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Our goal now is to solve the Schrodingcr equation, i h ^ = H\ip), and oljtain 

the amplitudes Cg(p, t) and Ce(p, f). In its current form, the Hamiltonian contains 

'fast" terms evolving at a; ~ ljo - typically a microwave or optical frequency for 

transitions between angular momentum states. It is convenient to make the 

unitary transformation ^ with H = HQ + V, and HO 

appropriately chosen to simplify the calculation by removing these fast terms.® 

Substituting this into the Schrodinger equation gives: 

= m ) , (2.7) 

dt 

Consider the choice: 

oo 

Ho= J Y^\e.p){e.p\-\9,p){g.p\)d'p (2.8) 

-oo 

Using this in the definition of Vi, it is obvious that diagonal terms of V equal 

those of Vj. However, the off-diagonal terms, as given by equation (2.4), do not. 

Consider just the first exponential term in (2.4): 

oc 

-oo 

oo 

= J {e-''^\e,p + hk){g,p\+e'^'>'-^^'^\g,p + hk){e.p\) d'p (2.9) 

—oo 

Notice that although this eliminates the uo dependence in the first part of this 

term, the second part now has a 2uj dependence. We assume uJo - iu ujq + ui, 

allowing us to neglect this term; it oscillates rapidly compared with the first term 

(and other terms in Vj) and will average to zero when integrating the Schrodinger 

equation over a timescale associated with LUQ-UI. This approximation is known as 

the "rotating-wave approximation" [95], Using the rotating-wave approximation 

'Unitary transformations preserve the norm of the state, and thus all probabilities. This particular 

transformation is often called the "Interaction Picture," whereas using the full Hamiltonian of equation 

(2.3) is called the "Schrodinger Picture." 
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on the second exponential term of equation (2.4) as well gives Vi as: 

oo 

/ + + ^ ( l e . p ' X e . p ' l -= 

d^p' 

(2.10) 

where we have primed p to highlight it is only an integration variable. Inserting 

this into the Sehrodinger equation (2.7). and projecting onto the state p) gives 

the equations of motion for the coefficient Cg(p,f): 

/ „2 h/\ \ hO 

thcJp,t)= + + (2.11) 
2 m 2 

As suggested by the Hamiltonian, at a given momentum eigenstate, the ground 

state couples to just a single momentum in the excited state. Thus, although the 

system contains an infinite number of momentum states, wc sec that every pair 

of states p) and |e, p + hk) correspond to a two-level system. Wc therefore 

project equation (2.10) onto the state |e, p + hk), giving the equation of motion 

for the coefficient Ce(p + hk,t), and the second in a pair of coupled ordinary 

differential equations (ODEs) at each momentum p: 

/ 2 

The equations of motion now closcly resemble a more connnon treatment of the 

two-level atom that ncglects the atomic momenta (sec for example [96]). Al-

though inclusion of the atomic momentum in the problem initially resulted in 

an infinite-dimensional space for determining \ p̂{t)), this shows that the prob-

lem reduces to the more connnon treatment with just two levels, where we couple 

f) ^ Ce{p + hk, t). In other words, we need only solve these two coupled dif-

ferential equations in order to construct the full state given any initial momentum 

distribution. 

We procced by defining: 

D • k 

A(p) = Ao + ^ ( 2 . 1 3 ) 

where hoJr = h^k^/^m is the kinetic energy of a single photon's momentum. 
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and ijJr is called the single-photon recoil freqnency. Rearranging for Aq and 
substituting this into equations (2.11) and (2.12) gives: 

ihcgipj) = 
2m 2 

+ + (2.14) 

ihceip + hk, t) = 
, 2m 2 ^ Ce(P,0 + ^ C g ( p , f ) e (2.15) 

The very first term in both equations is a constant energy o 
removed with the unitary transformations Ce,g(f) ^ Ce,g{f) cxp 

fset, and can be 
— I 

I P + i ^ V 
o™ fe j ' 2mn 

To simplify the notation, we define c i ( f ) = Ce(p + hk,t) and C2(t) = Cg(p,f), 

and arrive at the compact form for the equations of motion: 

/ • u\ \ 

C2{t) 

A ( p ) Qe- '^ 
- A ( p ) / C2(0 

(2.16) 

Notice that A ( p ) plays the same role as detuning in a treatment that ncglects 
momentum. That is. the detuning from resonance is now momentum dependent, 
as was suggested following equation (2.4). Notice that A ( p ) - A o = which 
is the sum of the Doppler shift and the recoil frequency. This agrees with our 
intuition that the resonant frequency should take into account the kinetic energy 
gained due to the photon's momentum. A corrected energy level diagram is given 
in figure 2.2, showing the momentum dependent detuning. Setting A ( p ) = 0 
gives the resonant optical frequency ijJres = ^̂ o + ^ + ^r- Thus for an atom 
at rest, the resonant frequency is the sum of atomic level splitting Uq, plus the 
recoil frequency. This is an often neglected feature of the two-level atom problem, 
and the derivation given here is suitable for treating ensembles of atoms with a 
range of momenta and therefore a spread of detunings. It also demonstrates the 
momentum change due to absorption (or emission) of a photon, a property that 
is crucial for atom optics, and atom interferometry. 

In what follows, we suppress the the argument of A unless it is necessary for 
clarity. Solving the characteristic polynomial of the matrix in equation (2.16) 
gives the eigenvalues A± = ±11, where Q = VQ^ + A'^/2 is the generalised Rabi 
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Figure 2.2: Energy level diagram, incorporating the centre-of-mass momentum and kinetic 

energy of the two-level atom. The detuning from resonance now takes into account the change 

in momentum during the absorption of a photon, and is therefore momentum dependent. 

frcqiicncy. The corresponding eigenvectors are: 

|A+) = cos {e)\e, p + hk) + sin p) 

|A_) = -sm{e)\e,p + hk) + cos{e)e"^\g,p) {2.17] 

with 

cos(2^ )̂ = I 

sin(20) = S 

These cigenstates are sometimes called 'dressed' atomic states (in contrast to 

'bare'), and will be of critical importance when we discuss atom laser outcoiiplers 

in chapter 7 [95]. The dressed states have energies given by: 

h\+ = ±h (2.18) 

Notice that on resonance, the energy is simply ±hn/2. and increases as the 

detuning increases. In the absence of coupling {il = 0). the atomic state energies 

arc separated by |A| in the rotating frame, and arc equal to the dressed state 
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energies. Thus h\± represents a shift in the energy eigenstates for the coupled 

system. This shift is known as the "AC Stark shift", also called the light shift. 

It is often most important when |A| » ^^ such that absorption is negligible for 

example in the context of optical-dipole traps [97]. In this case, we can expand 

A± to first order in il?/giving: 

2 \ 

V 2 ^ 4A 
(2.19) 

Therefore, in the large detuning limit the light shift on each of the atomic states 

is: 

± riuJLs 
4A 

Using the eigenstates, we now construct the unitary matrix: 

U = 
^ cos(0) -s in (0 ) ^ 

\ 
sin(6')e''^ cos 

(2.20) 

(2.21) 

which rotates the bare basis onto the eigenbasis (and back) using \\j) — U\j. pj), 

where j indexes the two dimensions of the 2 x 2 system [94], Of course in the 

eigenbasis, the Schrodinger equation is diagonal: 

c-{t) 

/ A 
n 0 

0 - Q 

c+(0 

V 

where c±{t) = (A±| 

y —vw / - y " " / 

We assume the initial condition: 

/ ^ \ 
,uj ^ I 

C3(P,0) 

c-it) 
(2.22) 

^ Ce(p + /tk,0) ^ 

\ / \ 

0 
(2.23) 

/ 

where |^(p)P is the initial momentum distribution of the state. Using this initial 

condition, the solutions for c± are: 

cAt) ' 

\ 

/ 
V'(p)sin(0)e 

(2.24) 

/ 

Transforming back to the bare basis using U gives the solutions for Ce and Cg-. 

/ . , . . o . /o.\ \ 
^ c,{p + hk,t) ^ 

V Cg(p,f) / \ 
V'(p) cos 

(2.25) 

/ 
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Thus wc have solved the Schrodiiiger equation for a two-level atom initially in 
the ground state and with an a momentum-space wavefunction ip(p). Notice that 
the excited state amplitude gains an additional phase of 0 relative to the ground 
state. In other words, the laser phase is added onto the atomic phase. Although 
this phase is arbitrary at this point, it will be crucial when we consider atom 
interfcrometry in chapter 3. Consider now: 

(2.26) 

which is time independent. This defines the normalisation for the two-level sys-
tem. and fiu'thermore, demonstrates that probability is distributed between the 
momentum states |p) and |p + h k ) and is conserved. Often when dealing with 
the mean-field description of a BEC (see chapter 5), the normalisation as given in 
equation (2.6) is instead normalised to N, where N is the number of atoms in the 
condensate. Equation (2.26) then states that the fraction of atoms distributed 
between p and p + hk is conserved. 

The time-dependent probabilities for the excited and groimd state are: 

Pe{t) = \Ce{p + hk,t)\' 
iV + A2 

sm 
\ 

(2.27) 

= 
mpw 

1 - Q2 + A2 sni 
+ A2 

\ / J 
(2.28) 

respectively, which arc identical in form to those connnouly derived (again, sec 
96]), with the exception that A is momentum dependent. In this case, the 

system oscillates from atoms in the ground state at momentum p, to 
atoms in the excited state at momentmn p + hk. These oscillations occur 

at the generalised Rabi frequency, Q (which is also momentum dependent), and 
are named Rabi oscillations after Isidor Issac Rabi who received the 1944 Nol)el 
Prize for first describing and measuring them with nuclear magnetic resonances 
hi 1938 [98 . 

Figure 2.3 shows two examples of Rabi oscillations, plotting the probability 
for the excited and ground state as a function of Qt. One case assumes on 
resonant coupling at p (solid lines), and the other ofi-rcsonant (dashed lines). 
It is important to note that this off-resonant coupling can occur either at the 
same momentum p, with a different electric field drive frequency uj\ or at a 
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different inonicntuin p', with the same drive frequency u. When off resonantly 

coupled, the system oscillates at a higher frequency with a decreased amplitude. 

Considering the envelope function of Pg (or Pg), we see that when A = 

Figure 2.3: Rabi oscillations in a two-level system. Probability is plotted on the vertical axis, 

as a function of Qt on tlie horizontal axis. Blue represents the ground state, and black the 

excited state. The solid curves represent coupling on resonance, i.e. A(p) = 0. Dashed curves 

represent off-rcsonant coupling with A(p) = 1.2JI 

p^ = Pg = 1. Thus 2n defines the full-width-half-maximum (FWHM) for the 

resonance, assuming no spontaneous decay of the excited state. Thus, provided 

A ^ Q, one can achieve probabilities close to 1, even off resonance - an important 

result when attempting to couple an entire cloud of atoms with some momentum 

distribution. 

Wc conclude by constructing the general solution defined in (2.5) for our initial 

condition (2.23): 

i m ) - I -^V'(p)Se-^sin |e, p + hk) 

cos 
A 

+1— sm 
n 

= j ^(p) + hk) + cPp 

(2.29) 

(2.30) 

Consider the term in the parentheses, which is weighted by the momentum 

space wavefunction. This has the form of the common two-level atom solution. 
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with the modification that the two states of the system not only represent elec-

tronic states of the atom, but also associate an external-momentum eigenstate 

with each electronic state. Having derived these results rigorously, and with the 

knowledge that absor[)tion leads to a change in momentmn by /?,k, an alternative 

and equivalent approach to the problem becomes clear for atoms in free space. 

We may first solve the strictly two-level system, accounting for the photon's mo-

mentum and an appropriate detuning, and then weight these solutions according 

to the momentum space wavcfunction before integrating over all momenta to ob-

tain the full solution. The probability of finding Ng atoms in the excited state at 
oo 

thne t is then Ne{t) = J lipip)]"^Pe{t) d^p. and similarly for Ng. This approach 
- o o 

to including a momentum distribution will be used in chapter 10, when investi-

gating the effects of a momentum width on the Bragg diffraction of a cloud of 

atoms. 

Finally, it should be noted that this treatment neglects any irreversible pro-

cesses such as spontaneous emission. Spontaneous emission can be derived from 

first principles with a quantisation of the electric field; see for example [99]. In 

this case, it arises from a coupling of the atomic states to the infinite number vac-

uum modes of the electric field, which gives a lifetime to the excited state of l / F , 

where F is the spontaneous emission rate or cquivalently the natural liucwidth. 

Thus coherent evolution only occurs over tiniescales much shorter than the ex-

citcd state lifetime; i.e for Q » F, the solutions we have just derived provide an 

accurate description of the system. 

As an example, the D2 line of ^'^Rb has F ~ 27r x 6 MHz [100], and therefore 

coherent evolution only occurs over nanosecond timeseales where » F. Because 

the incrtial phase shift in an interferometer increases with the free evolution t ime 

T, such a transition is not particularly suitable for interferometry. O n the other 

hand, for the transition between the the F = 1 and F = 2 hyperfinc ground 

states of the spontaneous emission rate from the "excited" F = 2 state is 

16 orders of magnitude smaller due to a much weaker magnetic-dipole interaction 

and a smaller resonance frequency of ~ 6.8 GHz (see appendix C hi [96]). This is 

in fact why the F = 2 state is also callcd a ground state. Spontaneous emission is 

effectively completely negligible and very long coherent evolution can in principle 

be observed. As a result, the hyperfine ground states, which are connnon to all 

the alkali elements, have a very narrow linewidth making them ideal candidates 

for an atomic clock. Indeed, the second is currently defined through use of a 

transition between hyperfine ground states in '^'^Cs [3 . 
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The drawback to a microwave transition is that the momentum imi^r tcd 
in the absorption of a photon is ncghgible compared with that of an optical 
transition aromid five orders of magnitude less, drastically reducing the inertial 
sensitivity. So although hyperfinc transitions have long coherence times, they lack 
the necessary momentum transfer to result in high sensitivity inertial sensors. In 
chapter 4, we will see how the use of a two-photon (optical) coupling allows us 
to have sufficient momentum transfer, as well as long coherence times. 



Chapter 3 

Atom Interferometry with just 
Two Levels 

W e now discuss the application of atom-light interactions to atom interferometry. 
W e will sec that particular configurations of laser pulses enable us to build atom 
interferometers which arc sensitive to the laser detuning, or the acceleration of 
the laser relative to the freely evolving atomic frame. In what follows, we assiune 
a two-level system, which can represent any effective two-level atom (or system 
in general). In addition, we label the two coupled states as |1) and |2), with an 
implicit momentum label and momentum transfer. Likewise, any detuning term 
has an implicit momentum dependence. 

3.1 Mirrors and Beam Splitters 

An alternative method for describing the time evolution of a two-level system is 

with the unitary operator U{t): 

\m) = u{t)\m) (3.1) 

Using the two-level atom solutions from the last chapter, we may write U(f) in 

the |1), |2) basis: 

\ 

U{t) = •n Arh I hA L , A oi,. - z g e ' ^ s i n f f ^ cosH^f + ^ # s i n 
(3.2) 

/ 
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Consider the two oii-resonancc cases = n and = 7r/2. Assuming 
IV'(O)) = |1) this leads to: 

U{t,)\l) ^ ( 3 . 3 ) 

f>(W2)|l) = ^ ( | l ) - ^ e - 1 2 ) ) (3.4) 

For t̂ r, callcd a 7r-pulsc, there is a 100% transfer of population into state |2), and 
for called a 7r/2-pulse. there is a 50/50 superposition of states |1) and |2). 
Thus TT-pulscs and 7r/2-pulscs represent atom optic mirrors and (50/50) beam-
splitters respectively, in direct analogy with optics. By combining several of these 
pulses, one can build an atom interferometer in the same way mirrors and beam-
splitters can be used to do so in optics. In the next sections, we investigate two 
important pulse sequences: the Ramsey pulse sequence, and the Mach-Zchnder 
pulse sequence. 

3.2 The Ramsey Atom Interferometer 

In 1949, Norman F. Ramsey developed a new method of spectroscopy, now known 
as the "Ramsey Method of Separated Oscillatory Fields" [101, 102], This tech-
nique had a large role in the development of atomic clocks, and won him the 
Nobel Prize in 1989 [103], In general, the Ramsey method involves applying 
two coupling pulses of radiation, separated in time. In between these pulses, 
the atomic state evolves coherently and freely. This results in a spectral resolu-
tion determined by the free evolution time rather than the pulse time of a single 
interaction.^ 

Consider applying two 7r/2-pulses separated by a time T, and with a finite 
detiming. Our 7r/2-pulse is defined by fir = tt/2. Each segment of this pulse 
sequence can be represented by the appropriate unitary operation. U(r) is used 
for the interaction pulses, as defined in equation (3.2). For the free evolution, we 
have the simple matrix:^ 

(y/iO = 
0 

V 0 
(3.5) 

Again assuming the atoms are initially in state |1), we determine the final state 

'This would be the case in a Fourier hmited system. 
^Derived from the Schrodiiiger equation with Q = 0. 
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of the system by taking matrix products of each unitary operation: 

|V;(2r + r ) ) = (7(r)f/;(r)f/(T)|l) 

The residt gives the probabihty for state |2), P2 = \C2{2T + as: 

(3.6) 

P2 -
2Q4 

• sm 

V 2 / 

2A2 + + (^cos(Qr) + cos(rA + <&) 

+ A)2cos(rA + $ + (V) 

(3.7) 

where $ = 02 — represents an overall phase differcncc between the driving 

field at the second and first 7r/2-pulses.^ Notice that all bnt one cosine term 

contain the product TA. Thus, in varying cither the time between pulses or 

the detuning, the probability oscillates. These oscillations represent interference 

fringes know as Ramsey fringes, typically scanned via the detuning. These are 

l)lotted in figure 3.1 as a function of A for Q — 12 and T = 1 in arbitrary units. 

For |A| the fringe period in A will be ~ 2Tr/T as fi ~ Ji in the cosine 

terms. In fact, it can be shown that: 

P2 - ^ [1 + cos {AT + $)] if |A| < O (3.8) 

This is highlighted by the inset of figure 3.1, which shows just the central fringes. 

The period is ~ 1, and the fringe amplitude stays close to 1. Note that even 

with Q = 12 and |A| < 3, which is not a particularly strong example of the limit, 

equation (3.8) still well approximates the fringes. Typical experimental lunnbers 

have Q on the order of tens of kHz, and T on the order of 1 s. Thus A need only 

cover a range of a few Hz in order to scan several fringes, a range much less than 

The scaling of the fringe period with l/T has allowed unprecedented precision 

in spectroscopy. For example, with T ~ 1 s the central Ramsey fringe is less than 

one Hz wide, and niHz resolution of the resonant frequency is possible, giving a 

highly precise reference for locking the driving field frequency. It is this feature 

of Ramsey interferometry that aided development of ultra-precise atomic clocks 

^Ofteii this is zero in principle, although it can be used to scan fringes. It also importantly highlights 

a sensitivity to any phase noise of the driving field(s). 
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Figure 3.1: Ramsey fringes as a function of detuning for Q = 12 and T = 1 (arb. units). 
The inset shows the central fringes over the range jA| < 3. and is well approximated by 
P2 = 5[ l+cos(Ar + $)]. 

in the microwave domain, and inevitably the redefinition of the Second in terms 
of a Caesium hyperfine transition. 

Finally, it is worth noting that the Ramsey method was initially developed 
as a spectroscopic technique for the measurement of nuclear magnetic moments. 
It evolved into a general spectroscopic technique, and can be understood as an 
interferometer in the sense that two phases are compared - the phase evolution 
of the atomic state, compared to the phase evolution of the driving field. In op-
tics, this is analogous to a common-path polarisation interferometer, which can 
measure, for example, a birefringence (which delays the phase of one polarisation 
with respect to an orthogonal polarisation). Another similarity is to Young's 
double slit experiment, which compares the phase of two waves originating from 
two separated slits, at a screen some distance away. In this case, the slit separa-
tion is analogous to T. the slit width analogous to r , and position on the scrcen'' 
analogous to detuning. The fringes in figure 3.1 have a similar shape to the re-
sultant interference pattern in optics, and in the perturbative limit, the equation 
describing Ramsey fringes is identical in form to that for the interference pat tern 

I.e. the difference in tlie propagation distance from the two slits. 
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of the double slit exi)erimeiit (see [96] for the perturbative calculation). 

3.3 The Mach-Zehnder Atom Interferometer 

The Mach-Zchnder interferometer in optics has the configuration given in figure 
3.2. An input laser beam (red) propagating in mode |1) is split by a 50/50 
beamsplitter into modes |1) and |2). These are then reflected by two mirrors 
before being recombined and interfered at a second beamsplitter. Scanning a 
relative phase shift between each arm 0 (the wedge in the upper arm), results in 
interference fringes at both output ports in the number of detected photons, Ni 
and N2. Any additional phase shift can be measured as a shift in these fringes. 

The mathematical description of beamsplitters and mirrors in optics is iden-
tical to that for two-level atoms as discussed in section 3.1. We may therefore 
construct an analogous Mach-Zehnder atom interferometer by utilising a three-
pulse sequence in the order 7r/2-7r-7r/2, where each pulse is separated by a time 
T. The two 7r/2-pulses are equivalent to the beamsplitters in figure 3.2, and the 

Figure 3.2: Mach-Zchndcr optical interferometer. Two bcamsphtters (BS) and two mirrors 
(M) arc u.sed to bcamsplit. rcflcct, and then interfere an optical beam (red). |1) and |2) represent 
•vertical" and "horizontal" propagation modes of the light, in analogy with |1) and |2) for a 
two-level atomic system. The wedge represents some relative phase shift accumulated between 
the two arms of the interferometer. Ni and N2 represent the numl)cr of detected particles in 
each respective mode by two detectors (blue). 
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Figure 3.3: Mach-Zchnder atom interferometer for atoms incident with a constant mean 

velocity v„ in an inertial frame. v„ • k / 0 in general, although Va and k are perpendicular 

in this figure for the purpose of comparison with figure 3.2. The red ellipses represent the 

atom-light interaction regions, which are separated in time, and also space if Vj, is not parallel 

to k. as is the case for a gravimeter configuration. In general, each interaction pulse can have a 

different phase cpi. The grey dashed line represents the centre-of-mass coordinate of the atomic 

state. 

TT-pulsc equivalent to both mirrors as it simultaneously reflects both states.^ This 

is shown schematically in figure 3.3 for atoms with a constant velocity v^ in an 

inertial frame. Recall that the two states of these interferometers arc |1) = |1, p ) 

and |2) = |2,p + hk)-, separated in momentum by hk. Thus there is a physical 

separation of the two arms of these atom interferometers.® Ramsey interfer-

ometers typically operate on microwave transitions, and thus the separation is 

negligible for reasonable values of T, due to the small magnitude of a microwave 

photon's momentum.'^ It is for this reason that almost perfect interference can 

still occur in the Ramsey sequence in the absence of a 'mirror'- the states are 

still extremely well overlapped at the second beamsplitter. 

We may once again utilise unitary transformations to determine the action of 

a Mach-Zchnder pulse sequence on the state of the system: 

\^iiT + 2T)) = U{T)Uf{T)U{2T)Uf{T)U{T)\l) (3.9) 

®In the geometry of figure 3.2, both mirrors can be thought to 'act' simultaueously in the sense 
that the light beams arrive simultaneously from the first beamsplitter. 

®In the current description, we are approximating the atoms by a momentum eigenstate, and thus 
a separation strictly exists only in momentum space; the states are plane waves in position space. 
However, we draw space trajectories in figure 3.3 to build the analogy with optics. In practice, atoms 
are best described by wavepackets, which have a finite momentum width and spatial extent. Therefore, 
given enough time, significant spatial separation occurs provided the momentum width is < hk. 

Equivalent to a velocity on the order of lOnm/s for compared with atomic cloud sizes on 
the order of hundreds of microns to several millimetres. 
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Figure 3.4: Mach-Zehndcr iiitcrfcrcncc fringes as a function of the pnlse detuning for il. = 100 

and T = 0.5 in arbitrary units. The inset shows the central region with j A| < 10. demonstrating 

negligible sensitivity to the detuning in the limit that jAj < fi. 

where r is again the 7r/2-pulse length, and each interaction pulse may have a 

different phase in general. As was the case for the Ramsey interferometer, an 

analytic expression for P2 is readily derived. However, its complexity limits any 

insight gained by stating it explicitly, and we only plot the resulting fringes as 

a function of A in figure 3.4. In this case, Q ^ 100 and T = 0.5 in arbitrary 

units. Additionally, we assume that all three pulses have the same detuning and 

optical phase. An important difference between these fringes and Ramsey fringes 

is that for |A| < Q, P2 - 0; apparent in the inset which plots the same fringes 

over the range |A| < 10. We see that even for a modest ratio of A/f^ = 0.1, the 

population of the cxcited state is below 1%. Thus in the small detuning limit, a 

Mach-Zehnder atom interferometer is insensitive to the detuning of the driving 

pulses. Indeed, in this limit the expression describing the Mach-Zehnder fringes 

reduces to: 

-[l-cos{(t),-2(t)2 + <i)z)] (3.10) 

where is the relative phase of the zth coupling pulse. This obviously does not 

depend on the detuning. This can be explained by noting that any evolution 

between the first and second pulse due to a small detuning is reversed during the 
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sccoiid j)criod of free evolution by the 7r-piiLse. This reversal of the evolution is 

often called a 'spin-echo' [104], named in the context of a pseudo-spin descrip-

tion of two-level atoms and their evolution (see [95]). Thus, a Mach-Zehnder 

configuration is not well suited to frequency measurement and therefore atomic 

clocks. On the other hand, this innnunity to small detunings is an advantage for 

inertially sensors, which are the subject of the next sections. 

3.3.1 High Precision Mach-Zehnder Gravimeter 

We now show that the phase shift of a Alach-Zchnder atom interferometer is sen-

sitive to gravitational acceleration.^ Consider an atom in a uniform gravitational 

field with acceleration g = -gz. and with v^ x k = 0. In the lab frame (or 

cquivalently the laser frame), the atoms undergo a constant acceleration leading 

to parabolic trajectories in the z coordinate. This is shown in figure 3.5. The 

solid grey parabola represents the centre-of-mass trajectory. Note that these are 

space-time trajectories, and atoms (ideal) move only in the ^-direction (compare 

with figure 1.1 in the introduction). It is clear from the figure that the trajectories 

for the accelerated case will sample a different optical phase at each pulse with 

respect to the constant velocity case. This is simplest to analyse in the centre-of-

F igure 3.5: Mach-Zchiidcr atom interferometer in a uniform gravitational field g = -gz. The 

grey dashed lines arc the unaccelerated trajectories from figure 3.3. Note this is a space-time 

diagram. An area is enclosed in spacc-time as v„ x k = 0. 

®0f course, a uniform acceleration cannot be distinguished from a gravitational field, and thus 

all that follows also applies to uniform acceleration of the apparatus with respect to the freely-falling 

atomic frame. 
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mass f rame of the atomic state, which is accelerating at g.® The (iioii-relativistic) 
t ransformat ion to this f rame is given by: 

t' = f 

where the primed coordinates arc those of the accelerating frame, and Vk — hk/m 
is the velocity imparted by the beamsplit ter . Note tha t the origin of coordinates 
of both frames coincide at the first 7r/2-pnlse. In this frame, the lasers arc seen 
to acceleratc towards the a toms in the z-direction. Recall the definition of onr 
coupling field: 

Eo cos {ijt - kz + 0) 

= E o cos ^ujt - kz' + (f) — ke^t + kj^gf 

=Eo cos M - fcz'+ 0') (3.12) 

where k • r = for the gravimcter configuration. In the accelerating frame, the 
electric field has the same form as tha t used in the derivation of the two-level 
a tom, with the subst i tut ion 0 ^ 0' = (/> - k ^ t + k^at"^. This is important for 
two reasons. First, it implies tha t the laser frequency becomes: 

^ ' = u j - k ^ + kgt (3.13) 

The first additional term is a constant Doppler shift. The second term is a 
t ime-dependent Doppler shift - a frequency chirp. Therefore, assuming the laser 
is on-resonancc at the first pulse {t = 0). it will strictly be off-resonant at the 
second and third pulses a t ime T and 2T later, respectively. Secondly, the phase 
(j)' increases quadratically in t ime and therefore during a single pulse time ~ r , 
the optical phase added to the atomic phase will be t ime dependent. However, we 
will remain in the small detuning limit provided the t ime between pulses satisfies: 

\kgT\ < Ŝ  (3.14) 

®This frame is freely falling, and inertial in context of general relativity and the equivalence prin-
ciple. 
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This additionally implies: 

\kgTT\ < Qt 

: . A0' « ^ (3.15) 

where Acp' is the first-order change in (p' over the pulse time. Thus in the small 

detmiing limit we can approximate the phase as constant during one pulse, and 

the detuning negligible. Equation (3.10) then still describes the interference 

fringes in the accelerating frame, with: 

01 = 01 

^^ ^ 4>s - kvkT + 2kgT' (3.16) 

and therefore the interferometric phase becomes: 

- + 01 - 202 + 03 (3.17) 

for the configuration in figure 3.5. For the general case with g not parallel to k: 

= - k • gT'̂  + 01 - 202 + 03 (3.18) 

Thus, through its sensitivity to the phase of the light, the interferometer is sen-

sitive to acceleration parallel to k. In particular, a small change in acceleration 

will be enhanced quadratically with increasing T. However, this benefit may 

seem limited at first glance, by virtue of equation (3.14), which places an upper 

limit on T. Indeed, if T is made too large then the second and third pulses will 

be far off-resonant. There is, however, a solution. As we are able to reliably 

control the laser frequency, we may attempt to balance the laser chirp seen in 

the accelcrating frame, by imposing an opi)osing chirp a in the laboratory. This 

can be done in a way such that the additional laser phase is 0(f) = af^/2 and 

therefore: 

01 - 202 + 03 - aT^ 

giving 

$„ = ( Q - k - g ) r 2 (3.19) 
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In this way, sensitivity can be increased qnadratieally with T. and still satisfy 

eqnation (3.14). By scanning a, we can find the ccntral interference fringe at 

$ = 0, giving Qo = k • g. Precise knowledge of k and its alignment with respect 

to g gives a value for g. 

As an example of the potential precision of an atomic gravimeter, consider 

equation (3.18) for a small change in gravity Ag: 

= kAgT^ (3.20) 

and therefore 

A., = ^ (3.21) 

where we have assumed that k • g = -kg. If we utilise a coupling on the 

D2 line, k ~ l O ^ n " ' . Assuming T = 200 ms, then: 

Ag ~ x2.5 X 10"®A$ms-2 (3.22) 

Now A<I> will typically be limited by technical noise and enviromnental factors 

such as mirror vibrations. However, as a fundamental limit we may consider 

the atomic shot-noise, or "projection noise," which gives AP2 = •P2(l - ^2)/ 

where N is the total number of atoms detected at the interferometer output [105], 

Assuming the interferometer has been biased midway up an interference fringe 

(i.e. $ = n/2,P2 = 0.5), and combining this with a first order Taylor expansion 

of equation (3.10) gives: 

(3.23) 
\/N 

Thus, for N = 10® atoms/s 

Ag ~ 2.5 X l O ^ ' ^ m s ^ V v ^ 

or 

^ ~ 2.5 X l O - 1 7 / f e (3.24) 
g 

This potential limit is beyond current state-of-the-art absolute gravinieters, such 

as falling corner cube devices ([106] and rcfs. therein). Indeed, the current state-

of-the-art devices include an atom interferometer with T = 400 nis, and N ~ 10^ 
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atoins/s, resulting in a sensitivity of 1.1 x [10]. Furthermore, the sen-

sitivity can be enhance by using multi-photon transitions for LMT beamsplitters, 

which will be discussed in chapter 8. 

3.3.2 Sensitivity to Rotations 

In addition to sensitivity to linear acceleration, if the frame containing the lasers 

is rotating, there will be additional phase-shifts if v^ is not parallel to k. This 

is the situation, for example, for an atom interferometer constructed in an Earth 

based laboratory as the lasers define a rotating frame due to the rotation of the 

Earth. In fact, if v^ • fc = 0 then the interferometer will only be sensitive to 

rotation; an atomic gyroscope [14, 15, 16, 17]. We will not discuss gyroscopes in 

detail here, but will derive the first-order rotational phase-shift contribution. 

We assume uniform rotation in what follows. The atoms once again represent 

an inertial frame, and are seen to follow curved trajectories in the rotating frame 

due to inertial forces that can be represented by the acceleration terms: 

acor = -2r2E X v„ (3.25) 

acen = -^E X {fls X r) (3.26) 

where acor and acen are the Coriolis and centrifugal accelerations respectively 

[107]. fif; is the Earth's local angular velocity, and v^ and r are the atomic 

velocity and position in the rotating frame. Thus, even if there is no acceleration 

in an inertial frame, the atoms seem to accelerate in the rotating frame. In what 

follows, we will only consider the first order, dominant contribution of these 

accelerations to the phase shift. Higher order corrections have been discussed in 

[108]. 
A typical interferometer evolution time of T ~ 0.1 - 1 s results in \ flE\T 1, 

as ]fi£| ~ 7 X 10"®rad/s. Thus the centrifugal contribution, which is second-

order in QeT, can be neglected. Furthermore, QeT is the rotation angle of 

the wavcvector. and thus k • v^ ~ 0 over the extent of the interferometer. The 

Coriolis acceleration can therefore be treated as a uniform acceleration in this 

limit. W'e use the result of equation (3.18) with equation (3.25), and calculate 

III the case of a iion-uniformly rotating frame, an additional acceleration exists given by 

aEui = X r. This is called the Enler acceleration. 
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the additional phase shift for uiiifonn rotation: 

= - k • acovT^ + (/>!- 2(̂ 2 + 03 

= 2k • (II X v j r ^ + 01 - 202 + 03 (3.27) 

where we have dropped the subscript on the angular velocity as it can repre-

sent any local uniform rotation, provided |r2|r < 1. The Coriolis shift has an 

impact even in atomic gravimeters, due to atomic trajectories with momentmn 

components transverse to k. This will be discussed in detail in chapter 10 

Combining the phase shift for uniform acceleration with the phase shift for 

uniform rotation, the total inertial phase-shift of a Mach-Zehnder atom interfer-

ometer can be written as: 

$ ~ -ke • (a - 2r2 X + - 202 + 03 (3.28) 

where a is any uniform acceleration. We will assume v^ • k = 0, and therefore 

ri X Va = 0 until chapter 10. 

3.3.3 Add i t i ona l Phase Shifts 

It should also be noted that this entire derivation has only considered the phase 

shift arising from the atom-light interaction. In general, there arc two more phase 

contributions. The first is the propagation phase, which arises from atomic state 

phase evolution during propagation in the interferometer. It was first described 

by Storey and Cohen-Tannoudji using Feynman path integrals to calculate the 

action over each classical trajectory using the Lagrangian [109]. The proi)agation 

phase is then: 

0p™p = {S^i - S-:i)/h (3.29) 

where 

C{z,z)dt (3.30) 
Ja.B 

is the action for the classical trajectory in each interferometer arm A and D, 

and C the Lagrangian. Calculating (j)prop for a uniform gravitational field (i.e. 

neglecting gradients) gives (pprop — 0. 

The second contribution is callcd the separation phase, and arises if the two 
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iiitcrfcronicter j)athH do not perfectly overlap at the final beamsplitter, leading 

to a spatial phase given by (psep = P • Az / f i , where p is the average momentum of 

the two arms, and A z is the separation of the two trajectories [108]. Again, for 

a uniform gravitational field, the paths will perfectly overlap with A z = 0 and 

therefore (psep — 0. Thus for uniform acceleration, only the atom-light interaction 

contributed to the phase of the interferometer. 

As a final note, the Ramsey and Mach-Zehnder interferometers discussed are 

the simplest interferometer configurations, and provide a firm introduction to 

atom interferometer theory. Other configurations exist, such as the Ramsey-

Borde interferometer (four successive 7r/2-pulses) [110], which is sensitive to the 

photon-recoil frequency [85]. This is a measure of the ratio h/m, and in turn, 

the fine-structure constant [18, 19, 20]. Other configurations have also imple-

mented multi-path interference [111, 112], and a comprehensive review of atom 

interferometry can be found in reference [113]. 



Chapter 4 

The Three-Level Atom: Raman 
Transitions 

Wc have seen that two features arc important for the sensitivity of hght-pulse 
interferometers: long coherence times for long free evolution T, and a signif-
icant momentum transfer in the beamsplitting proccss. As mentioned at the 
end of chaptcr 2, spontaneous emission significantly reduced the coherence time 
for (large k) optical transitions, whereas long-lived microwave transitions have 
negligible momentum transfer. 

In this chaptcr, we consider a three-level atom driven by two classical light 
fields. This forms the basis for the description of stinnilatcd Raman transitions, 
which are two-photon transitions that can couple two long-lived grounds states, 
as well as transferring the momentum of two photons through an absorption 
/stinuilatcd-emission process. They are the simplest multi-photon transitions, 
and are therefore a precursor to higher-order transitions such as those which 
describe Bragg diffraction. Bragg diffraction is used for LMT beamsi)litting later 
in this thesis, and is discussed in chapter 8. 

4.1 A Three-Level Atom in Two Classical Light Fields 

Consider an atom with centre-of-niass momentum p and three electronic levels. 
These states arc defined as in chapter 2: |l,p), |2,p), and |e,p). The electronic 
level structure for this atom is given in figure 4.1(a). We use this to approximate 
the level structure of ^^Rb (and other alkalis) with |1) and |2) the hyperhne ground 
states, and |e) an excited state for example one of the 5 /̂̂ 3/2 hyperfinc states 
100]. We assume the atom is coupled to two electromagnetic fields cos(a;if -

kj . f + and Eo2cos(a;2f - k2 • r + <̂ 2) via an electric-dipole interaction. As 
we will see, in addition to coupling the ground states to the excited state via a 
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(b) E/h 

|e,p + / i k i ) 

A i ( p ) A 2 ( p ) 

0 p p + Kki p + hke 

F i gu re 4.1: Three-level atom energy diagrams, (a) Electronic level structure, with two elec-

tromagnetic coupling fields of frequencies u i and uJ2 » ô q- This approximates the general 

level structure of an alkali element such as A j and A2 arc the detunings from one-

photon resonance with the excited state for states |1) and |2) respectively. S is the detuning 

from two-photon resonance. One-plioton coupling between |1) and |2) is neglected due to a 

very large detuning, (b) Energy level diagram including the centrc-of-mass momentum of the 

atoms, similar to figure 2.2. In this case, A i . A2. and S become momentum dependent as given 

in the main text. Based on the results of scction 2.1. if we treat u;i as a photon absorption, 

and UJ2 a photon emission, then we couplc momentum states |p) |p ftki) |p /ikg) with 

kp = ki - k2. 

o i ic-photon coup l i ng , these fields can dr ive a two-photon t r a n s i t i o n be tween t h e 

two g r o u n d states. W c m a y neglect one-pho ton c o u p l i n g be tween |1) a n d |2) as 

t he d r i v i n g fields are far off-resonance (wo < Wc a d d i t i o n a l l y a s s u m e 

t h a t uji on l y coup les |1) t o |e), a n d uj2 on l y coup les |2) t o |e), w i t h d e t u n i n g s A i 

a n d A2 respectively.^ T h e dif ference be tween these d e t u n i n g s is t he two-pho t on 

d e t u n i n g , ^ = A i - A2 . Genera l l y , one chooses 6 < A i , A2 . 

'In addition, the ground hyperfine states of an alkali are only coupled via a magnetic dipole 

interaction, which is much weaker than an electric-dipole coupling. 

principle, also couples |2) to |e) with a modified detuning of A i - (uii - 1^2). Similarly wj 

couples |1) to |e). However, we neglect these couplings as they are far off re.sonant for the two-photon 

process, which is of primary interest here. 
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W'c now consider the cciitre-of-niass inoinentuin of the atoiii. If we assume that 
initally drives a photon absorption, and that 0̂ 2 stimulates a photon emission, 

then based on the results for the two-level atom (section 2.1). we know that the 
absorjjtion process will change the atomic momentum by /;ki, and the emission 
process will change the momentum by ~hk2- bi other words, the coupled states 
of the system are: |1, p) ^ |2, p + /?ki) ^ |e, p + like), where k^ = ki - k2. This 
is summarised in figure 4.1(b). All detunings become momentum dependent as 
before. We use the result discussed at the end of section 2.1 and initially neglect 
the momentum distribution of the atomic state, first solving the simpler three-
dimensional problem. The momentum distribution can then be accounted for at 
the end by weighting the solutions. Given this, we write the state of the atom in 
the combined momentum-electronic eigenbasis: 

\m) = Ci(f)|l, p) + C 2 ( f ) | 2 . p + hK) + Ce{t)\e. p + hk,) (4.1) 

with normalisation given by: 

i m i m ) = ic i (oP + \c2{t)\' + = 1 (4-2) 

For simplicity, we drop the momentum labels from the kets, and simply associate 
each internal state with the corresponding momentum state. Again, utilising 
earlier results, the hamiltonian for the system can be written as: 

H = ^i(p)|l)(l| + ^2(p)|2)(2| + Ee{p)\e){e\ 

+ die • Eoi cos(L.;if + [|l)(e| + |e)(l| 

+ d2e • EO2 cos{uj2f + 4>2) [|2)(e| + |e)(2|J (4.3) 

where £'j(p) is the energy of the atom in the j t h state, for an initial momentum 
p, and dje = (j|d|e) the electric-dipole moment for the j t h one-photon couplng. 
Note that the spatial term in each of the cosines is absent as it is accounted for 
by the momentum in the definition of the coupled states. Using figure 4.1, it can 
be shown that: 

ri[Aa; + (5(p)] , . 
(P) = ^ + ^kzn (-1-4) 

ii2(p) = 2 ^ ̂ kin H-Oj 
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/ i (A(p) + a;i +(^2) 
^e(p) == 2 

with 

(4.6) 

A(p ) = A i (p ) + A2(p) , ^Ip) = A i ( p ) - A2(p) , A^' = - 0̂ 2 (4.7) 

and 

p^ ke-p ^ h^r ^kin — 1-
2m 2 m 

Explicitly: 

Ai(p) = + 
m. 

A2(p) = ^^ + 
m, 

(4.8) 

(4.9) 

(4.10) 

where uj2r = hk'e/2m is the two-photoii recoil frcQueiicy. Notice that Ekin is 

common to all states, and we may shift our zero of energy to remove it. Substi-

tuting the above into the Schrodinger equation, and choosing a frame rotating at 

g-iHot/fi with: 

Hn = hAuj 
|2)(2|-|1)(1| 

h{uji + UJ2) 

gives the equations of motion for the state amplitudes: 

/ cM ) ^ 
C2it) 

V \ 

A(p) Qae"'^^ Qie'''^' \ 

d{p) 0 
f^ie"^' 0 -5(p) / 

\e){e\ 

Ce{t) 
C2[t) 
Cl(0 / 

(4.11) 

(4.12) 

where we make the rotating-wave approximation once again, and = dje-Eoi/Zi 

and ^̂ 2 = d2e • arc the Rabi frequencies for the respective one-photon 

transitions. Consider the equation for 4(0-

Ce{t) = (A(p)ce(f) + + n2e-'1'^C2{t)) (4.13) 

We are interested in the regime where the population in the excited state is 

negligible as we wish to avoid its relatively large spontaneous emission rate. This 

occurs in the limit that both |Ai(p)| and |A2(p)| » f^i, J22, |< (̂p)|, for which 
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the cxcitcd state undergoes very small ami)litu(ic, high frequency oscillations 
~ A(p ) . These average to zero over tiniescales associated with the evolution 
of the ground states, and we can neglect the excited state evolution by setting 
Ce(0 = 0. Equation (4.13) then becomes: 

Ce{t) = -
A(p ) 

(4.14) 

This step is known as adiabatic elimination, as the excited state is assumed to 
adiabatically follow the groiuid states over the time scales of interest [114], An-
other way of interpreting this limit is that the probability current flows smoothly 
between the ground states via the excited state. We substitute this result into 
ecjuation (4.12) to give the reduced equations of motion: 

Cl{t) ) \ 

^ m - ̂  A(p) / ^ 

V Ci(0 ) 

(4.15) 

A(p)^ "^P'' A(p) / 

q 2 I 

where A(?!) = 0i - If we shift our zero of energy once more by adding 
to both diagonal terms, wc have: 

/ C2{t) \ I 
~ 9 

( c.it) \ 
(4.16) 

V J -^e(p) j \ cAt) J 

Notice that the reduced Schrodinger equation has exactly the same form as that 
for the two-level atom in (2.16). Thus, in the limit of large one-photon detunings, 
the three-level atom reduces to an effective two-level atom, with an effective 
detuning: 

Seip) - ^(P) -
nl - ni 
4 A J p ) 

= '^(P) - - ^Ls) (4.17) 

where wc have used the light shifts derived for the two-level atom in equation 
(2.20), and the superscripts label each ground state. Additionally, we have made 
the substitution A ( p ) 2A„(p) , with A„ (p ) the average of the two one-photon 
detunings. Thus, the effective detuning is not simply the two-photon detuning, 
but includes a term proportional to the differential light shift of the ground states. 
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Tlic cffcctivc Rabi frequency: 

a = (4.18) 

now defines the coupling strengtfi for the effective two-level system, and it is now 

the relative phase of the the two laser beams, A^ , that is added onto the atomic 

phase. Assuming an initial non-zero amplitude for one of the groimd states, 

the three-level atom will undergo Rabi oscillations between the ground states at 

^e = sjil-l + These transitions are often named ''Raman transitions." 

It is interesting to consider two cases applied to a ^^Rb atom approximated 

by this three-level model. First note that an excited state of the D2 line in 

has a frequency of ~ 384 THz, whereas the hyperfinc ground state separation is 

~ 6.83GHz (sec section 5.1). Thus, |ki| ~ |k2|. Consider first the case of co-

propagating laser beams, which implies that ki ~ k2. In this case, kp ~ 0, and 

therefore the two ground states are coupled with negligible momentum transfer; 

the momentum of the absorbed photon is balanced by the recoil momentum due 

to the emitted photon (consider figure 4.1). This is reflected by the two-photon 

detuning: 

k • p 
(^Ip) = + + S 

m 

(4.19) 

which shows that the two-photon resonance is independent of p.^ This configu-

ration can be useful when attempting to couple internal states of an ensemble of 

atoms, equally across their momentum distribution. We use this configuration 

for our Ramsey interferometer in chapter 6. 

The second case is that of counter-propagating laser beams, where ki ~ -k2 . 

In this case k^ ~ 2ki, and therefore the two ground states arc coupled with a 

momentum transfer of 2hki. In other words, the momentum of the absorbed 

photon, and the recoil momentum due to the emitted photon add, as they are in 

^The two-plioton Rabi frequency is, liowever still weakly momentum dependent due to the one-
photon detuning. 
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the same direction. Again this is rcficctcd in the two-photon detuning: 

k • p 
^ (̂p) = ^ + i02r + S m 

= ^ ^ ^ + 4ujr + (4.20) 
m 

and the two-photon resonance becomes momentum dependent. This configu-
ration is often called a "Doppler sensitive Raman transition." The two-photon 
detuning has the same form as that for the two-level atom [equation (2.13)], 
with twice the Doppler shift and four times the recoil frequency, as a result of 
two-i:)hoton momenta associated with the effective transition. 

Both the above cases have applications in atom optics, including applications 
in velocimetry [115], atomic velocity selection [116], and optical memories [117]. 
The Doppler sensitive configuration is i)articularly useful in the context of atom 
interferometry, as it achieves our desired goal of coupling between long-lived 
ground states, but also transfers momcntmn on the order of that for an optical 
photon. As a result, Raman transitions are well suited to atom interfcrouicter-
based inertial sensors. Furthermore in Chapters 6 & 7 we will demonstrate the 
application of Doppler sensitive Raman transitions to producing high-fiux atom 
lasers, and Doppler insensitive transitions to a frec-space BEC Ramsey interfer-
ometer. 
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Part II 

Ingredients for Interometry: 
Atomic Sources, Mirrors, and 

Beamsplitters 





Chapter 5 

Atomic Sources for Atom 
Interferometry 

In this chapter, wc give a backgrovind of the BEC and atom-lasers sonrces nsed 

in our atom interferometers. In particular, wc focus on the momentum width of 

Bose-condenscd sourccs using the mean-field description of a condensate. Mo-

mentum width will be shown to be of crucial importance in atom interferometers 

in chapter 10. We conclude with a description of our two different apparatus for 

prodTicing BECs and atom-lasers. 

5.1 ^^Rb and Transitions in a Multi-Level Atom 

All of the work in this thesis uses which is a single valence-electron alkali 

metal. As a result, it has a relatively simple, hydrogen-like level structure. Here, 

we summarise the main features necessary for this thesis. A comprehensive de-

scription of alkali atom level structure, and allowed transitions can be found in 

the text by C. Foot [96 . 

The level structure of is given in figure 5.1 for the fine strTicturc line from 

'̂̂ Sx/2 5^P3/2 at ~ 780nm, known as the "D2 line" (D refers to "doublet"). 

A detailed summary of the rubidium D-linc data has been written by D. Steck 

[100]. Each energy level represents the atomic state |F, m/r)/ where F is the total 

atomic angular momentum (nuclear plus electronic) (luantum luunber, and mp 

the magnetic quantum number. Different F states arc non-degenerate due to the 

hyperfine interaction between the nuclear and electron angular momenta. Differ-

ent mp states arc also shown as non-degenerate, as occurs in a weak magnetic 

field due to the Zeeman cffcet [96 . 

'Unless explicitly stated otherwise, kets of the form |F,mF> always refer to the internal atomic 

state. 
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Figure 5.1: Hypcrfiiie level structure of the D2 line (not to scale). Different mp states 

are shown as non-degenerate, as is the case in a weak magnetic field. Examples of allowed 

electric-dipole tran.sitions are shown (fr+. tt). which are important for lascr-cooling. atomic 

detection, and Raman transitions. An example of an allowed RF magnetic-dipole transition is 

also shown, important for evaporative cooling, and atom-laser outcoupling. 

In Part I, only two- and thrcc-lcvel atoms were considered. In praeticc, all 

atoms are multi-level, and can only be approximated as two- or three-level, when 

accounting for transition selection rules and (one-photon) detuning. 

5.1.1 Electric Dipole Transition Selection Rules 

In the case of electric dipole coupling, the coupling term d • E from equation (2.3) 

can be decomposed into three terms, which correspond to linearly independent 

basis-polarisations that couple different Zceman states with Amp = ±1 or 0. 

These transitions are labelled cr+. and n respectively. If we choose our quan-

tisation axis parallel to the local magnetic field, then in this case only, (T+, a~ 

and TT correspond to right circular, left circular, and linear polarisation respec-

tively. For example, linearly polarised light propagating along the magnetic field 

is an equal superposition between cr+ and a~] containing no tt component. As 

such, it can only drive Am^ = ±1 transitions. Linear light polarised along the 

local magnetic field is pure vr polarisation. In addition, A F = ±1 or 0, how-

ever, A F k Amp 0 sinniltaneously due to conservation of angular momentum 
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(photons have 5 = 1 ) . 
In this thesis, electric dipole transitions arc important for laser cooling and 

manipnlation of (section 5.4.1), atom detection (scction 5.4.2), dipole trap-
ping (section 5.4.3), Raman transitions for beamsplitting and atom-laser ontcon-
pling (chapter 6), and LMT beamsplitting (chapter 8). 

5.1.2 Magnetic Dipole Transition Selection Rules 

Magnetic dipole transitions arc also possible, but are much weaker than electric 
dipole transitions due to their generally weaker coupling strength {p/c <C d. 
where ^ is the magnetic dipole moment). However, in the case of the two hy-
perfine ground states, electric dipole transitions are forbidden by the Al = ±l 
selection rule, where I is the electron orbital angular momentum quantum num-
ber. Therefore only magnetic dipole transitions can occur between ground states, 
with the selection rules AF = ± 1 or 0, and A m p = ± 1 or 0. Again, AF k. 
A m p / 0 simultaneously. Such transitions are typically at RF frequencies (be-
tween Zeeman states within a given F state), or microwave frequencies (between 
Zeeman states in different F states). 

In this thesis, magnetic dipole transitions are important for evaporative cool-
ing (section 5.4) and atom-laser outcoupling (scction 5.3.1 and chapter 7). 

5.2 Bose-Einstein Condensates 

The vast majority of intcrferometry work presented in this thesis has used Bose-
condcnsed sources of atoms, based on the long term goal of answering the question 
if, and under which conditions, Bosc-condensed sources arc better choices for 
atoni-interferometry. Since its first realisation in 1995 by the groups of Eric 
Cornell and Carl Wieman [44], and Wolfgang Kctterle [45], BEC has l)een studied 
extensively both experimentally and theoretically. An excellent experimental 
review by Kctterle et al. can can be found in [118], and an excellent theoretical 
review by Dalfovo et al. is given in [119]. 

5.2.1 Mean-Field Description of a Bose-Einstein Condensate 

The celebrated mean-field description of a BEC, based on the Cross-Pitaevskii 
equation (CPE) [120, 121], provides an excellent theoretical description of the 
ground state of a condensate. In i)articular, it is useful for calculating the density 
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and nioiiicutuin distributions of a condensate, as well as estimating the momen-

tum width of a ballistically expanding BEC or weakly outeoupled atom-laser. 

In chapter 9 we will use a mean-field model, coupled with the quantum statis-

tics from a many-body description [61], to estimate the effect of dcphasing in an 

atomic gravimeter. 

The phenomenon of BEC was first described by S. Bose in 1924 in his seminal 

paper on the statistics of photons [46]. A. Einstein extended Bose's work to 

massive particles in two more papers in 1924 and 1925 [46, 47, 48]. They predicted 

that below a certain critical temperature, a collection of N non-interacting bosons 

will begin to rnacroscopically occupy the ground energetic state of a given system. 

This phase transition occurs when the condition: 

nX'̂ ^ ~ 2.612 (5.1) 

is met, where n is the particlc density, and Xth = yj2tth?/mkBT is the ther-

mal deBroglie wavelength for particles of mass m at a temperature T . ks is 

Boltzmaim's constant. 

BEC is commonly produced in dilute atomic gases, confined in-trapping po-

tentials which arc well approximated by a harmonic potential: 

= i m { ^ y + ^ y + u y ) (5.2) 

where the trap is characterised by its trapping frequencies (u;^, cJy, a;^) in the 

(x, y, z) directions respectively. Often, these traps are cylindrieally symmetric 

about (say) the y-axis. with LJ^ = LU^ = Wp, producing a 'cigar' shaped trapping 

potential. The energy ground state of a single particle in a harmonic trap is 

that derived from the standard treatment of the quantum-mechanical harmonic 

oscillator: 

V.o(r) = (5.3) 

where ujho = {uJxî yî zY^^ is the geometric mean of the trapping frequencies. In 

the absence of atomic interactions, the wavefuction of a BEC of N atoms is then 

related to the harmonic oscillator ground state via: 

(t>{r) = \/^V'o(r) (5.4) 

and n (r) = \(j){v)\'^ is the condensate density distribution. Notice that in the 

case of non-interacting particles, the condensate size is independent of char-
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/ X 1/2 

actcriscd by the harmonic oscillator length scale Uho = ( — ^ ) • Likewise, the 
y ^^ho ) 

momentum-space wavefucntion, given by the Fourier transform of V^lr)! has an 

/V-inclependent width; governed only by the Heiscuberg uncertainty relationship 

(i.e. ~ o-ho)- '̂ ho is typically on the order of 1 ^m, giving momentum widths on 

the order of Q.lhk, with k the wavenuniber for the D2 line. 

In order to take account of atomic interactions, one should in princii)lc solve 

the Heisenberg equations of motion for the field operator ^ ( r , t) using the many-

body Hamiltonian of N interacting particles. However, the mean-field approxi-

mation, first formulated by Bogoliubov in 1945 [122], has provided an excellent 

description of Bosc-condcnscd atomic samples. The key result is the celebrated 

Gross-Pitaevskii equation: 

t h ^ M v , t ) = ( - ^ + V U r ) + Umr,t)\A<i>ir,t) (5.5) 
dt ' ' ' V 2m 

where U is the mean-field coupling constant, which approximates the the atomic 

interactions as low-energy binary collisions via the two-body potential — v) = 

US{r' — r). Such collisions arc assumed to be s-wave, which arc spherically sym-

metric and characterised by the s-wavc scattering length a with U = Anfi^a/in. 

a can be thought of as the effective radius of a hard-sphere scattering potential. 

This non-linear Schrodinger equation models a BEG as a single particle wave-

function normalised to N , with the atom-atom interactions treated as a potential 

term proportional to the BEG density For a > 0, one can think of this as 

cach atom in the condensate 'feeling' a mean repulsive potential due to every 

other atom. For all but very low atom numbers, a < 0 condensates are unstable 

and collapse [119], and we assume a > 0 for all that follows. 

There are two critical assumptions in deriving the GPE: that yV > 1, and that 

the s-wave scattering length is much less than the average particle separation, 

i.e. na^ < 1, where n is the mean density. 

The ground state for a given harmonic trap is a stationary solution, and can 

found by setting <&(r,f) = where is the chemical potential. The 

GPE then becomes: 

//0(r) = + Kxi(r) + 0(r) (5.6) 

In general, eciuation (5.6) is readily solved numerically. However, the ratio of the 
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interaction to kinctic energy is given by Na / aho? and in the limit that Na/aho > 

1 we may neglect the kinetic term, proportional to V^(/)(r). Solving for the 

density, this gives: 

= no 
\ rl rl rlj 

(5.7) 

This is known as the Thomas-Fermi approximation, with tiq — n/U the peak 

density and r, the Thomas-Fermi radius in the i th direction. For the experiments 

in this thesis, we use ^'^Rb condensates of typically 10^ - 10® atoms, and trapping 

frequencies on the order of ujho ~ 27r x 50 Hz. a ~ 5 x 10"^ m for ^^Rb, and thus 

Na/aho > 350. 

Equation (5.7) is an inverted parabola in each direction, as defined by Kxi(r)-

When Vexflr) = j-i, the density goes to zero, giving the Thomas-Fermi radii for 

the condensate: 

r, = 
I 

mujf 

where a, is the harmonic oscillator length in the direction. Normalising the 

B E C wavefunction to N gives the value of the chemical potential as: 

hwho flSNaV^' 

For typical experimental parameters the Thomas-Fermi radii are on the order 

of 10^m, larger than the harmonic oscillator length. In fact, as Na/aho > 1, 

and LOho is on the order of uju then r^ ai. This can be intuitively understood 

through the mean-field repulsion, which pushes atoms further out into the wings 

of the density distribution compared with the non-interacting case. As a result, 

one expects that the momentum width of an interacting condensate in-trap will 

be smaller than that of a non-interacting bosc gas due to simple Heisenberg 

arguments. This observation will be important when we come to discuss the 

divergence of atom-laser beams. 

^This can be seen by converting equation (5.6) to dimensionless units using the harmonic oscillator 
energy and length scales 
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5.2.2 The M o m e n t u m Distribution of a Condensate 

The narrow moincntuiii distribution of a condensate is arguably its most at-
tractive i)roperty for atom interferonictry. The effects of momentum width are 
pronomiced in the atom-hght interaction for LMT bcamspHtters, and a narrow 
momentum width can help reduce systematic effects; sec chaptcr fO. Here we 
highlight the momentum distribution for trapped, and ballistically expanding 
BECs. 

In-Trap 

In order to calculatc the in-trap monientmn distribution of a BEC, we take the 
Fourier transform of the position-space wave-function. In the Thomas-Fermi 
hmit, the momentum distribution is then: 

2 

n(p) = ' ' 

15iV 
= r^r„r -'y'^lQf,^ p4 (5.10) 

where p = \ yjpir'i + p^r^ + pir'i with p = and J2 is the second order 
Bcssel function of the first kind. In general, the momentum width of this state 
should be calculated using the relation (Ap,)^ ^ (pSj, _ (̂ p ŷ ^^^ direction, 
where ft is the momentum operator. However, {pf) is divergent as a result of the 
sharp edges of the Thomas-Fermi density distribution [123]. In fact, the Bcssel 
function is representative of this through its oscillatory behaviour with increasing 
p. A numerical calculation of the density distribution from the GPE does not 
have sharp edges, and consequently the momentum distribution simply decays 
with p. 

We may estimate the momentum width from equation (5.10) by using a gaus-
sian distribution [57], which well ai)proximates the ccntral lobe of n(p) in each 
direction as shown in figure 5.2 for the direction. The dashed curvc is the 
gaussian, and both are normalised to 1 at pi = 0 with arbitrary miits. By cciuat-
ing the area under each curve, we obtain an estimate for the momentum width 
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Figure 5.2: Iii-trap Thomas-Fermi momentum distribution along the t"'-(iirection (blue line), 

compared with a gaussian of width Api (black dashed line). Both distributions are normalised 

to 1 at Px = 0, with arbitrary units. Ap^ is estimated as the gaussian standard deviation which 

sets the areas under each curve equal. 

from the gaussian standard deviation. For example, along the x-direction: 

2048v/2 h 
Ap , = 

3157r3/2 r . 

^ 1 .65^ (5.11) 

with similar expressions for the y- and z-directions, replacing r^ with the corre-

sponding Thomas-Fermi radius. Thus, the momentum width of a BEC in-trap 

is on the order of that dictated by the Heisenberg uncertainty principle, as in-

tuition would suggest. As r̂  ~ 10//m. typical in-trap momentum widths are 

Apj ~ OMhk. This is around an order of magnitude smaller than the corre-

sponding ground state of a non-interacting Bose-gas [ecjuation (5.3)]. For an eye-

opening comparison, a classical non-interacting gas with this momentum width 

corresponds to a Maxwell-Boltzmann distribution at a meagre temperature 40 pK 

for 

Ballistically Expanding Bose-Einstein Condensates 

Although the momentum width of a BEC is very narrow in-trap, for the inter-

ferometers discussed in this thesis (and indeed most atom interferometry based 

inertia] sensors) the atomic source nnist freely evolve in an inertial frame. For a 

BEC, this means releasing it from the trap, which is typically switched off sud-
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dcnly. This results in a conversion of the interaction energy due to the mean-field 
into kinetic energy, driving expansion of the cloud and increasing its inonicntuni 
width. In i)racticc, it is straightforward to numerically integrate the GPE in 
order to determine the dynamic properties of the expanding cloud, including its 
momentum width. We may however gain some insight from an analytic treat-
ment. 

It can be shown that in the Thomas-Fermi limit, the parabolic profile of the 
condensate density is preserved, with a rescaling of the Thomas-Fermi radii in 
time [119]: 

n{t) = 6,(f)r,(0) (5.12) 

The dimensionless scaling parameters obey the differential equations: 

d^ _ Luf 
(5.13) 

with 6i(0) = 1, and 6,(0) = 0 for a sudden trap switch-off at t = 0. It can also 
be shown that the release energy of the condensate is related to the chemical 
potential and the scaling parameters by [119]: 

i^rel — -zr 

/ 

where the second equality follows from conservation of energy [Erei = 0), as well 
as applying the initial conditions for h, and k- Equation (5.14) is nothing more 
than a sum of the interaction energy (1st term), and the kinetic energy (2nd 
term). 

For simplicity, we now assume a spherical trap, and consider the asymptotic 
limit of Erei- 111 this liinit, the Thomas-Fermi radii grow to infinity, and thus 
the interaction energy term goes to zero. Note that a full numeric integration 
demonstrates that b has reached within 3% of is asymptotic value after t = iuj^^. 
In the asymptotic limit, equation (5.14) then becomes: 

(5.15) 

Thus, the radius of the BEG grows linearly in this limit and is considered to be 
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ballistically expanding at a velocity: 

V = b{t)r{0) = ^ ^^ (5.16) 

or in terms of inorncntiun, 

This represents the nionientuni of the 'edge' of the elond. We then use the 
root-niean-square (RMS) cloud radius f = r(0)/\/7 to give a measure of the 
ballistically expanded cloud's RMS momentum width: 

AP,. , = (5-18) 

As this estimate only derives from kinetic energy arguments, we must also in-
clude the effect of the initially non-zero momentum width in-trap. Combined 
in quadrature with result (5.11), the total momentum width for a ballistically 
expanding BEC can be estimated as: 

/ /l-m/iX ^̂ ^ / ^oinuji^ Am a 

V 
(5.19) 

In figure 5.3, we plot the momentum width of a BEC along the ^-direction 
as a function of expansion time. The solid line represents a full numeric inte-
gration of the CPE for our experimental parameters of Â  = 5 x lO'̂  atoms and 

= (50, 57, 28) Hz. Data points arc measured momentum widths using 
Bragg spectroscopy [57, 83] (also chapter 8 for our Bragg laser-system), with the 
inset giving an example Bragg spectrum. The vertical thickncss of the data points 
represents the measurement uncertainty. Measured and theoretically calculated 
momentum widths arc in excellent agreement, with Ap^ ~ 0.14M:. 

Intriguingly, if we calculate Ap^ from equation (5.19) using the geometric 
mean of our experimental trapping frequencies for ujho- then we find agreement 
within 10% of the measured value. The discrepancy is likely due to the approxi-
mation of a spherical trap. Nevertheless, the analytic argmnents given earlier can 
provide a robust estimate of the momentum width of a ballistically expanding 
BEC. 

In general, very narrow momentum distributions are desirable for several rea-
sons, which are discussed in detail in chapter 10. Suffice it to say that the 
atomic beamsplitters and mirrors involve momentum sensitive transitions, and 
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Figure 5.3: Momentum width along 2 (parallel to gravity) as a function of expansion time. 
Data points are measured values using Bragg spectroscopy. The inset is the Bragg spectroscopy 
data for the highlighted point. Solid lines are numeric solutions to the GPE with no free 
parameters. 

thus a finite momentum widtli will play a role in determining the effectiveness 
of the atom-optical elements. It is worth noting that BECs can have momen-
tum widths arotmd an order of magnitude smaller than the coldest laser-cooled 
(thermal) atomic sources at around 150 nK [10]. Even so, work presented in 
[78] and in chapter 10 suggests sources even narrower than a condensate will be 
advantageous for LMT beamsplitters. 

Eor the typical parameters above, Ap for an expanding cloud is the same 
order of magnitude as that of a non-interacting Bose-gas. Thus, while mean-
field effects play a role in broadening the momentum width, switching them off 
completely in-trap (by using a Eeshbach resonance, for example [124]), does not 
provide a large reduction in momentiun width due to the reduction in cloud size 
(for a given trap). One possibility is to tune the interactions to zero at the time 
of release from the trap. This results in a momentum width equal to the in-trap 
width [equation (5.11)], which is smaller than the harmonic oscillator ground 
state momentum width [125]. Tuning to even larger interaction strength would 
increase the cloud size further, further reducing the momentum width for such a 
technique. 

On the other hand, atom-lasers, both pulsed and continuous, can be made 
to approach the Heisenberg limit of the Thomas-Fermi momentum width [126 
Atom-lasers are the topic of the following section. 
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5.3 Atom Lasers 

Often. BEC is touted as the matter-wave analog of the optical-lascr. which is a 
macroseoi^ie occupation of a single optical mode. Indeed, one of the key aspccts 
of a BEC arc its cohcrence properties, which share a strong similarity with that 
of the optical laser. One of the first experiments on interference with BEC was 
performed at MIT in 1997. in which two BECs were produced in a double-well 
trap, before being released. Once overlapped, the two condensates displayed a 
spatial interference pattern, in a similar fashion to Young's double slit experiment; 
demonstrating first-order spatial coherence [127]. 

In the same year, the MIT group also demonstrated RE-induced outcoupling 
of a magnetically trapped BEC. This produced pulses of coherent atomic clouds, 
which freely evolved under gravity - effectively producing the worlds first pulsed 
atom-laser [49]. Shortly after this, Esslinger et al. were able to extend the 
outcoupling process to produce the first continuously outcoupled beam of Bosc-
condensed atoms, strengthening the analogy with the optical-laser [51]. Eurther-
more, using single-atom counting statistics, it was latter shown by Esslinger's 
group that the second-order correlation function g2(T) of a contiimous atom-laser 
was equal to 1, as is the case for the optical laser. This extended the analogy 
with the optical-laser to the quantum regime [56]. 

In this section, we review the properties of atom-lasers and the different out-
couplers for producing them. In particular, we focus on transverse momentum 
width, in comparison to a ballistically expanding BEC. In chapter 7, wc comparc 
the atomic flux of atom-lasers produced using different outcoupling schemes. 

5.3.1 Atom-Lasers from Magnetically Trapped BECs 

BEC is often produced experimentally in a magnetic trap, which confines atoms 
by taking advantage of their magnetic moment. In the weak magnetic field of 
typical magnetic traps, the Zeeman splitting is much less than the hyperfine 
ground-state splitting, which allows one to approximate the Breit-Rabi formula 
[128] for the ground states as:^ 

E.^^AB) ^ + ( - 1 ) ^ + (5.20) 

•^The nuclear angular momentum number of "^^Rb is 1 = 3 /2 . 
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with QF the total angular moincntimi gyroiiiagnctic factor: 

(5.21) 

where we have also used the fact that gi gg."̂  huJhf is the ground state hypcrfine 
splitting, //B the Bohr magneton, and B the magnitude of an externally ai)plicd 
magnetic field. 

Many current-coil configurations exist for producing magnetic fields with local 
minima. For the work in this thesis we use the quadrupole-Ioffe configuration 
(QUIC), developed in Miinich [129] (see also section 5.4.2). The magnetic field 
magnitude about its minima can be well approximated by: 

,5.22, 

where the we have considered only one dimension for simplicity and the origin 
is placed at the field minima BQ, also callcd the "bias field." Thus, the resultant 
harmonic potential has a trapping frequency in the ith direction proportional to 
the field curvature: = mFgFl-iBB"{0)/m. 

Combing (5.22) with (5.20), Ep^mF has a local minima for negative m^ values 
for F = 1 and positive mp values for F = 2. The energy splitting between 
adjacent mp states is given by: 

AEp{B) = i-lfAmpgFfiBBir) (5.23) 

where Amp = ±1. AEp is position dependent by virtue of equation (5.22), 
allowing us to selectively address dift'ercnt regions within a trapped cloud. This 
feature is critical for both RF-forced evaporative cooling, and atom-laser outcou-
pling in magnetically confined samples, which both rely on removing atoms from 
the trap by coupling them to the untrappcd state {nip = 0). More specifically, 
gpHB/h ~ 0.7MHz/G. and thus Zeeman sublevels are split on the order of MHz 
for tyjHcal bias fields on the order of a few Gauss. Using RF [49] or Raman 
coupling [50], different mp states can be coupled, and thus trapped atoms can be 
driven to either the untrapi)ed state, or high-field seeking states that are ejected 
from the trap. In addition, Raman transitions between the hypcrfine ground-
states are also suitable for atom-laser i)roduction and produce superior beam 
quality and Hux, as shown in this section and chapter 7 respectively. 

"gi is the nuclear gyromagnetic factor, and Ls smaller than the electron gyroniagnetic factor g, by 
the electron to proton mass ratio. 
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Atom-Laser Outcoupling 

The basic operation of an atom-laser outcoupler for magnetically trapped con-

densates is a coupling between the trapped and untrapped mp states. Under a 

weak pcrturbative coui)ling. atoms transferred to mp — ^ will freely evolve under 

gravity and the mean-field potential, falling out of the magnetic trap and forming 

an atom-laser beam. As an example, consider the |1,—1) state of Along 

the z-axis, the total potential for an atom is the sum of the Zeeman energy and 

gravitational potential, giving: 

Vi,-\{z) =-muj^z +mgz 

Vifiiz) = mgz + C 

HbBO 
+ C (5.24) 

(5.25) 

for the trapped and untrapped rnp states respectively, with g the magnitude of 

acceleration due to gravity and C a constant. These potentials are given in figure 

5.4, which is a schematic representation of atom-laser outcoupling. Note that the 

minimum of the trapping potential is not centred at the field mininuim 

{z = 0) but sags to 2s = —gl<->jl due to gravity. 

Figure 5.4: Schematic of atom-laser outcoupling from a magnetic trap. Tlic condensate sags 

under gravity to = -g/uj l , for wliieii tlie local magnetic field enviroinnent then defines the 

RF or Raman resonance required to outcouple atoms from a particular region in tlie condensate. 
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Figure 5.5: Cross-section of outcoupling-resoiiancc surfaces in the yz-plane (dashed hnes) in 
a harmonic magnetic trap. Energy increases from bhie —• green ^ yellow, with each contom-
representing an equal energy-step size. The BEC is represented by the blue ellipse, with 
accurate proportion to and position within the magnetic field. hWresiO) labels the resonance 
surface which intersects the centre of the condensate. It is approximately planar within the 
condensate due to its sagging under gravity in the magnetic field. 

The rcsonancc at a particular position in the cloud is given by: 

huJresiz) = Vl,-l{z) - V\,q{z) 

= ^ m u j y + hLOb (5.26) 

where h^b = h b B o / 2 and resonance at the centrc of the condensate is given by 
u>r{zg). Of particular importance is the dependence of the resonance on the bias 
field. If the field-niininiuin is not stable in time, particularly over the diu'ation of 
the outcoupling interaction, a continuous, uniform, and low-noise beam of atoms 
cannot be produced. 

In three dimensions, the resonance condition corresponds to an energy surface 
defined by equation (5.26), and is thus an ellipsoid. Figure 5.5 shows resonance 
surfaces as hnes in the yz-plane for {ujp,ijy) = 2nx (130,13) Hz, which arc typical 
values for the atom-laser experiments in this thesis. The BEC is represented by 
the blue ellipse, at its position and spatial extent within the magnetic field for the 
specified t rapping frequencies. Because the BEC sags under gravity to 2 = 2,„ 

an intersecting resonance surface is just a small fraction of the total ellipsoid, 
and is approximately planar in the xy-plane. Thus, in this regime and with 
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pcrtiirbativcly weak oiitcoupling, the atoin-lascr originates from a narrow region 

centred on this plane.^ Indeed, in the absence of gravity, or for niucli larger 

this wonld not be the case, and the atom-laser is coui)led from an ellipsoidal region 

within the condensate. This results in a highly divergent and nnilti spatial-mode 

beam; not particularly desirable for intcrfcromctry [130 . 

It should be noted that one of the results of coupling Zecnian states of a single 

hypcrfinc ground state is that the splitting between levels is equal to first order. 

Thus, population transferred to the untrapped state can be coupled to the anti-

trappcd state with non-negligible probability. The outcoupler system is therefore 

multi-level, adding complexity to the resultant beam. Multi-state outcouplcrs are 

investigated in detail in [131]. It is also possible to drive A F = ±1, Amp- = ±1 

Raman transitions between hypcrfinc ground-states. In this case, only two atomic 

states are coupled due to two-photon selection rules. In chapter 6, we will describe 

our Raman laser system which can be used as a hyperfine-outcoupler, and in 

chapter 7, we will compare the output the different outcouplcrs: RF", Zeeman-

Raman, and hypcrfine-Raman. 

Atom-Laser M o m e n t u m W i d t h 

In designing atom interferometers which utilise atom-lasers, a realistic configu-

ration is with the beamsplitters perpendicular to the atom-laser beam. In this 

configuration, the transverse momentum width will play an important role (see 

chapter 10). The transverse momentum width (simply, "momentum width" from 

here on in this section) is related to the spatial-mode of the atom-laser, rather 

analogous to the relationship between the spatial mode of an optical laser-beam 

and its divergence. Indeed, without interactions the spatial-mode evolution is 

well described by Gaussian optics, diverging only due to the Heisenbcrg uncer-

tainty principle. However, in the presence of interactions, the mean-field repulsion 

broadens and complicates the atom-laser's spatial mode. Detailed study of the 

spatial-mode of free space atom-lasers can be found in [52, 54, 126], as well as 

the thesis of M. .Jeppesen [132]. Here, we give a simple semi-classical description 

of the atom laser momentum width, and derive an order of magnitude estimate. 

Once couplcd to the untrapped state, atoms evolve freely under gravity and 

the mean-field potential of the trapi)ed atoms. Consider the ys-plane. Atoms 

will fall out of the condensate along 2, and experience the mean-field rei)ulsion 

®\Vhat is meant by "weak" oiitcoupling here will be discussed in detail in chapter 7. For now, it is 

enough to consider the coupling as irreversible, such that atoms to not Rabi-flop back to the trapped 

state. 
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in all three directions. As we arc interested in the transverse momentum width, 
we consider dynamics in the y-direction. Under the Thomas-Fermi approxima-
tion, the mean-field potential is an inverted parabola [see equation (5.5)] and the 
classical ccjuation of motion along y is therefore: 

m— = mwyy (5.27, 

which has the solution: 

y{t) = Vocoshiuyt) (5.28) 

Vy(t) = iOyyo smh{iOyt) (5.29) 

where yo is the initial y-coordinatc of the atom with respect to the centre of the 
condensate (i.e. |yo| < ^y), and Vy is the classical velocity. An atom must fall a 
distance d = — yl/ry)^^"^ + zO to escapc the condensate, with Zq the initial 
2-cooridinatc with respect to the condensate centre. Thus, the escape time due 
to gravity is given by: 

teivo, Zo) = ^ [r.(l - y'jriy^' + ^O] (5.30) 

and the atom will have acquired a transverse velocity of Vy{te). The contribution 
of the mean-field repulsion along z to tg has been neglected as the gravitational 
force is an order of magnitude larger for typical experimental parameters. In the 
perturbativc outcoupling regime, the resonance is FoTirier limited for example, 
20 ms of outcoupling will have a width of A = ±27r x 50 Hz. Combining this 
energy width with equations (5.22) and (5.23) gives an estimate of the upper and 
lower bounds of the coupling region within the condensate as: 

^mwliz, + z^)' - = ThA (5.31) 

which assumes the coupling region is planar. Note that for A = 27r x 50 Hz, the 
thickncss of this region is 2+ - 2 - < O.Olr^. The variance in Vy can then be found 
using the Thomas-Fermi wavefunction: 

= ^ / m r ) W [teiyo, dx^dy^dz^ (5.32) 
A/fl J R 

where the integral is over the region volume R, and NR is the number of atoms 
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in the coupling region. In general, this integral cannot be analytically solved. 

However, if we assume tg is constant an analytic solution docs exist and is given 

by: 

, _ (12[z^ - z.] 
ujlsm\i^{ujyte) 

35UNfi 
(2+ - 2_)a;ySinh {uyte (5.33) 

where the cubic terms in z± have been neglected as z±/r\ <?C 1. For example, 

using the escape time from the centre of the condensate, te = gives 

an upper bound on the momentum width, as it assumes all atoms interact with 

the mean-field for the maxinuun escape time. For our parameters, this upi)er 

bound is Apy — Tn^Vy — 0.033hk. Numerical integration of equation (5.32) gives 

Apy ~ 0.024/iA;; almost 30% lower. The above results apply equally to the x-axis 

with the appropriate parameter substitutions. Using oj^ = 2nx 130 Hz, numerical 

integration gives Ap^ ~ 0.27hk in the tight-trapping transverse direction. 

The above arguments show that an atom-laser has a momentum width sub-

stantially narrower than a ballistically expanding BEC, although still limited by 

mean-field effects. For example, in the y-direction, the Heisenberg limited in-trap 

momentum width is ~ 0.002M-; an order of magnitude lower than the atom-laser 

momentum width. However, if Raman transitions are used, they can impart a 

momentum "kick" to the outcoupled atoms along gravity, leading to a reduction 

in te and therefore a reduction in the momentum width as the atoms interact 

with the mean-field for a shorter period of time. This was the focus of work by 

M. Jeppesen et al, which rigorously showed that a Raman kick of ~ 1.5M- leads 

to a momentum width only a factor of 1.4 above the Heisenberg limit for their 

trap parameters [126, 132]. The above model estimates a momentum width of 

Apy ~ 0.01 IM; and Ap^ ~ 0.1 I M . 

Atomic source Momen t um width 

Laser cooled "•^Cs (150 nK) [10] 
1 hkcs 

Ballistically Expanding BEC 0.1 hk 

Atoni-lascr 0.01 hk 

Table 5.1: Summary of atomic source momentum widths. Typical orders of magnitude are 

given. The laser cooled source is stated in units of the recoil momentum for the ^^^Cs D2 line. 
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Table 5.1 summarises the order of magnitude momentum width of typical 
and current atomic sources, including the coldest rej^orted laser-cooled thermal 
source at ~ 150 nK [10 . 

5.4 Experimental Production of Bose-Einstein Condesates 

In general, the techniques for producing BEC are well documented and estab-
lished, with excellent reviews given in [77, 133, 134], While producing BEC 
remains a challenging feat, technology has advanced since its inception to the 
point that it has become a standard atomic source in many laboratories around 
the world. In this thesis, two existing BEC machines have been used for the 
experiments described. Over the last four years, the work in this thesis has made 
limited contributions to their construction. Here, we give only a brief description 
of each machine. 

A generic scheme for cooling to BEC is sunnnariscd below: 

1. Atoms are first captured and laser cooled in a 3D magneto optical trap 
(MOT). Often, the 3D MOT is loaded from a cold atomic beam such as 
that from a 2D MOT or a Zceman slower. This allows the 3D MOT to be 
located in an ultra-high vacuum (UHV) region (< 10"^°mbar), to minimise 
backgromid collisions that limit the BEC trap lifetime. Cooling in a 3D 
MOT achieves Doppler limited temperatures, which is ~ 145 //K for the D2 
hne of ^^Rb [100 . 

2. Sub-Doppler cooling techniques are applied to enable temperatures below 
the Doppler limit. This is typically polarisation gradient cooling (PGC) 
[135], which can achieve temperatures as low as 1/iK. However, this is 
usually at the cost of density, and thus for BEC production 20-40//K is 
more typical. 

3. The ultra-cold cloud is then loaded into a trap, using either magnetic con-
finement (the Zceman effect), or far off-resonant optical confinement which 
takes advantage of the AC Stark shift [97]. At this stage, often the cloud is 
compressed to boost the density at the cost of increased temperature. 

4. The dense, comi)resscd cloud is then evaporatively cooled to temperatures 
below the critical condensation temperature Tc. In a magnetic trap, this is 
forced using RF induced spin flips, which selectively transfer more energetic 
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atoms into uiitrappcd states. In an optical traj), the trap depth is reduced 

causing more cnergetic atoms to 'spill' out. In both eases, remaining atoms 

re-thermalise to a lower temperature. 

5.4.1 Laser Cool ing Systems 

Laser cooling of atomic ensembles is a well established tool used in the first 

stages of cooling to condensation. For the purpose of this thesis we only sum-

marise the laser systems used. For an excellent history of laser cooling, see 

41, 42, 43]. In our labs, we source our cooling light from home-built grating-

stabilised external cavity diode lasers (ECDLs), typically operated in the Littrow 

configuration [136]. These are driven by commercially developed diode laser con-

trollers from MogLabs [137], which contain highly stable current and temperature 

controllers, as well as high-voltage piezo drivers and locking electronics. Lasers 

are locked using saturated absorption spectroscopy with Rubidium vapour cells, 

and different variations of the Pound-Drever-Hall frequency-modulation (FM) 

spectrocopy technique [138]. Often, we use Zeeman-modulation as our FM tech-

nique [139, 140], as this avoids modulating the laser, and potential broadening 

of the line width. Locked in this way, our home built ECDLs typicallv have line 

widths on the order of 100 kHz over timescales associated with an experimental 

cycle (10s of seconds). During the course of the work in this thesis, a simple and 

cost-effectivc locking technique was also developed based on introducing FM us-

ing a piezo-modulated mirror. This was the subject of a publication [141], which 

is provided in appendix A. 

Where required (e.g. our 2D and 3D MOT lasers), we amplify our laser 

light using high-power tapered amplifiers (1.5-2.0 VV) from m2kLaser [142]. Fre-

quency shifting and shuttering is performed using a combination of acousto-optic 

modulators (AOMs) and electro-optic modulators (EOMs) as necessary. Light is 

then coupled into polarisation-maintaining single-mode optical fibres which clean 

the elliptical spatial mode, and isolate the laser system from the vacuum system 

optics (e.g. MOT and imaging). Typical optical power for each MOT is on the 

order 100 mW. 

5.4.2 The A t om Laser B E C Machine 

Originally built in 2006 by N. P Robins and C. Figl, the atom-laser machine 

(ALM) was designed to investigate the production of atom-lasers and their prop-

erties, with a major goal of producing a truly continuous atom-laser source. Im-
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Figure 5.6: Simplified representation of the atom-laser machine vacuum system. A 2D MOT 
loads the 3D M O T through a pressure impedance. After laser-cooling and magnetic compres-
sion, the atomic ensemble is transported to the science cell where it is loaded into the magnetic 
trap for evaporation to BEC. Magnetic coils and their configurations arc given in figure 5.7. 

portant features of this system included a highly stable magnetic trap, in order 
to reliably address atoms in the BEC for outcoupling and pumping (sec section 
5.3), as well as separating the magnetic trap from the MOT region of the vacuum 
system; the intention being to simultaneously load MOTs while ruiming a lasing 
condensate. 

Figure 5.6 gives a simplified schematic of the ALM vacumn system. A key 
feature of the system are two quartz glass cells attached to a central main MOT 
chamber. The MOT chamber and adjoining science cell is oj^eratcd at UHV 

mbar) in order to suppress background collisions, which limit the magnetic 
trap lifetime. Pumping is provided by a 40 L/s ion getter pump, and two titanium 
sublimation pumps (TiSubs), as shown. The second glass cell houses the 2D MOT 
and dispensers (Alvatech), and is isolated from the ultra-high vacuum region 
using a pressure impedance. The 2D MOT provides a flux of up to ~ 10^" atoms/s 
for loading the 3D MOT using a push-beam (not shown). 

The MOTs are constructed with the configurations given by the red arrows. 
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Figure 5.7: Atoiii-lasor inachinc magnetic coils. 3D MOT coils are also used magnetic trans-

port of the laser-cooled cloud to the magnetic trap. The magnetic trap coils arc mounted on a 

chilled-water cooled aluminium block (sec figure 5.8). 

Counter-propagating beams arc produced using rctro-reflcction, with the beams 

converging shghtly to balance the intensity due to power loss on retro-refiection. 

Two-pairs of quadrupolc 'racetrack' coils are used for the 2D MOT, as shown 

in figure 5.7. A single pair of circular current coils are used to generate the 

quadrupolc field for the 3D MOT, coaxial with the z-axis MOT beams (gravity 

is in the —2-direction). These are capable of generating a gradient of up to 

200G/cm, and arc also used for magnetic transport of laser-cooled atoms to the 

science cell (sec cooling sequence below). Due to the large distance between them 

(~ 20cm), the 3D MOT coils are required to carry up to 400 A of current. As 

a result, they are constructed from hollow copper tubing, which allows water to 

be pumped through the centrc for cooling. The coils dissipate a peak power of 

~ 6 kW. 

The magnetic trap is based on a simplfied loffe-Pritchard configuration known 

as a QUIC trap. It constitutes a set of quadrupolc coils, with an orthogonal loffe 

coil as shown [129]. The trap is centred at the end of the scicnce cell, with the 

loffe coil coaxial with the y-axis; defining the longitudinal axis of the cigar-shaped 

potential. Our trap is well approximated by a harmonic potential with trapping 

frequencies given by iujp,LJy) = 2n x (130,13) Hz for the |1, -1) state. 

The experimental sequence for producing a BEG is as follows. The 2D MOT 

first loads more than 10^" atoms into the 3D MOT in less than 30 s. After loading, 

the MOT is magnetically compressed before applying a stage of PGC [135], which 

achieves temperatures of about 40 ̂ /K with little loss in atom number. At this 

stage, atoms are predominantly in the F = 2 ground state. By applying an optical 

pumping pulse of a' light, resonant with the \F = 2) \F' = 2) transition, 

atoms arc pumped into predominantly the |1, -1) state. The cloud is then caught 

in a magnetic quadrupolc field with a gradient of 200 G/cm generated by the 3D 
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Figure 5.8: Photograph of the ALM. showing the inagiietic trap. 2D and 3D MOTs, and 

the translation stage used for magnetic transport. The red arrow indicates the direction of 

translation. 

MOT coils, which are switched on in under 10/is. These coils arc attached to 

a precision translation stage, oriented along the x-direction of figure 5.6, which 

allows precise transport of the cloud to the science cell and the magnetic trap. A 

photograph of the ALM is given in figure 5.8, showing the 2D and 3D MOTs, the 

translation stage and its direction of travel (red arrow), and the magnetic trap. 

After transporting the atoms over 20 cm, they are loaded into the harmonic trap, 

in which they arc evaporatively cooled using a forced RF-evai)oration ramp that 

selectively removes the most cnergetic atoms. This results in nearly pure Bose-

condenscd samples of up to 10® atoms, with no discernible thermal fraction. 

The lifetime of the magnetic traj) is ~ 40 s, which is ample time for the exper-

iments in this thesis. Atoms arc detected after release from the trap and during 

ballistic expansion using standard absorption imaging. Absorption imaging is 

well documented [118]. Briefly, we illuminate the atomic cloud using a 100/xs 

pulse of 0-+ radiation, resonant with the = 2) ^ ^ 3} closed transition, 

and image them onto a chargc-couplcd device (CCD) camera using a single lens 

imaging system with a magnification of ~ 1.6. This image contains a shadow 

of the atomic cloud. A second pulse is applied after waiting 100 ms to give a 

backgroimd light intensity image. Using Beer's law, the logarithm of the ratio of 

these two images is then proportional to the column density n{y,z) = J n(r}dx, 

where we image along the x-direction. In order to image atoms in jF = 1), we 
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apply a 100^s pulse resonant with |F = 1) ^ \F' = 2). which rcpumps the atoms 

into |F = 2) prior to the first imaging pulse. A far more detailed analysis of our 

imaging system can be fomid in [143]. The total duty cycle of the machine is 

between 45s and 60s. 

5.4.3 Dua l-Spec i es B E C M a c h i n e 

Originally built by P. A. Alt in and N. P. Robins, the dual-species Rub id ium 

B E C machine was designed to produce condensates of ®®Rb in order to access a 

Feshbach resonance for tuning the atomic interactions via the scattering length 

[124], In particular, a major goal was to revisit the so-called "Bosenova" ex-

periments [144] and remedy a discrepancy between experimental and theoretical 

work [145]. This was recently accomplished by P. A. Alt in et al. [146], with 

details being beyond the scope of this thesis. condensates are produced 

by sympathetically cooling with ®^Rb; thus a ^^Rb condensate is also produced, 

and it is with in this machine that the gravirnetry experiments of chapter 

9 were performed. This compact B E C machine has been extensively engineered, 

warrenting a detailed description of its design, operation, and performance in 

Review of Scientific Instruments [134], Here, we only give a brief description of 

its operation for producing condensates of ^'^Rb. 

Figure 5.9 gives a simplified schematic of the vacuum system, including the 

major coil mount surrounding the science cell. The three smaller frames below 

show the different traps available for cooling to BEC. The vacuum system is 

relatively compact, and houses a high vacuum 2D M O T glass cell again isolated 

from the UHV region with a pressure impedance. The system is pumped with a 

combination of a 75 L/s ion getter pump and one TiSub. UHV pressure is on the 

order of 10"^° mbar. 

The 2D M O T is essentially identical to that of the ALM , loading a 3D M O T 

with up to 10'° ®^Rb atoms in 5 s. The 3D M O T is located as shown in the figure, 

also setup in a slightly converging retro-reflection configuration. After loading, 

the cloud undergoes 20 ms of P G C before the rcpumping light is switched off for 

1 ms. allowing the atoms to depump into the F = 1 ground state before all M O T 

light is switched off. 

Atoms are then captured into the quadrupole field of the M O T coils and 

magnetically transported over 40nmi to the quadrupole field of the Q U I C trap: 

oriented as shown in figure 5.9. This transport is aided by use of the rectangular 

transport coil, which is ramped up before ramping down (up) the M O T (QU IC ) 
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Figure 5.9: Simplified representation of the machinc. 

coils. Tlic loffc coil is then ramped up converting the quadrupole trap field 

into the harmonic field of a Q U I C trap, with trapping frequencies of (LVp^Uy) = 

2tt X (156,16) Hz for the |1, - 1 ) state. There are in total 8 magnetic coils (not 

including coils for imaging, R F evaporation, etc.) surrounding the science cell in 

the coil mount , which is cooled by recirculated chilled water. 

At this stage, there are on the order of 10® atoms at 200//K in the Q U I C trap, 

before R F forced evaporative cooling is applied over 15 s. In this way, pure 

condensate of 2 x 10® atoms can be produced. However, for the work in this thesis, 

we instead load the cloud into a dipole trap for the last stages of evaporation. The 
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(lipolc trap is iicccssary for producing condensates, wliich require application 
of an homogenous magnetic field to tunc the scattering length. As the machine 
needs to l)e optimised for either the magnetic traj) or dipolc trap, at the time of 
the work in chapter 9, it was convenient to produce condensates in this way. 
Furthermore, operation in a dipole trap enables spin polarisation of the sample 
with ease by using Landau-Zencr sweeps [147, 148, 149. 150]; useful for producing 
magnetically insensitive pure |1,0) condensates as a source for a gravimeter. 

We produce a far off-resonant crossed dipole trap [97] using light from a 20 W 
Er-doped fil^re laser at 1090 nm. which is split evenly on a polarising beamsplitter. 
Each beam passes through an / = 100 cm focal length lens. One "axial" beam 
is directed along the loffe coil axis, as shown in figure 5.9, with the lens place 
98cm from the atoms. The other beam crosses the axial beam at 75°. and also 
lies in the horizontal plane with the lens placed 106 cm from the atoms. RF 
evaporation is stopped when the cloud reaches a temperature of 10/^/K, at which 
point the dipole beams arc suddenly switched on to maximum power (9\V per 
beam) and the QUIC trap coils reduced to 50% current in order to aid with 
confinement along the axial beam. Evaporation in the dipole trap is initiated 
in this hybrid trap by reducing the power in the dipole beams, which reduces 
the trap depth. Towards the end of the evaporation cycle, the magnetic trap is 
completely switched off, leaving the atoms in the all-optical trap. 

This schcme produces pure condensates of up to 10® ®^Rb atoms in 30-45 s, 
and a final harmonic potential with {u>j;,ujy,uz) = 2n x (57, 28, 50) Hz. Standard 
absorption imaging is used for detection, as described in section 5.4.2. 



Chapter 6 

A Hyperfine Raman Coupler for 

Atom Optics 

Work in this chapter has been peer-reviewed and published in: 

J. E. Debs, D. Dormg, N. P. Robins, C. Figl, P. A. Altin, and J. D. Close. 
A two-state raman coupler for coherent atom optics. Opt. Express 17 p.2319 
(2009). [55] 

D. Doring, J. E. Debs, N. P. Robms, C. Figl, P. A. Altin, and J. D. Close. 
Ramsey interferometry with an atom laser. Opt. Express 17, p.20661 (2009). 
[151] 

D. Donng, G. McDonald, J. E. Debs, C. Figl, P. A. Altin, H.-A. Bachor, N. P. 
Robins, and .J. D. Close. Quantum-projection-noise-limited interferometry with 
coherent atoms m a ramsey-type setup. Phys. Rev. A 81, 043633 (2010). ]105] 

III part I, it was shown using a thrcc-lcvcl atom model that Raman transitions 
arc especially useful for inertial sensing with an atom interferometer, as was first 
realised and implemented by Kasevich and Chu [6, 7], The advantages lies in 
their ability to couple long-lived internal atomic states, their ability to provide 
significant momentum transfer in the process, and their ability to label external 
motional states via internal atomic states. In addition, an interferometer utilising 
Raman-based beamsplitters is sensitive to only the the phase difference of the 
two driving fields, and therefore a relative phase-stability between two lasers is 
required - a task that is practically less formidable than stabilising the al^solute 
phase of a single laser source. 
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In this chapter, wc dcscribc the development of a novel laser-system, designed 

to drive Raman transitions between the hyperfine ground states of Much 

of the work in this chapter has been published in [55], and this laser system is 

an essential tool for the basis of two more publications on the first free-space 

Ramsey interferometer with a B E C [105, 151]. 

Although this "Raman-Coupler" can be used for any application of R aman 

transitions, the work presented in this thesis focuses on the following two appli-

cations: 

• The production of atom-lasers comprised of atoms in a single internal atomic 

state, and with the highest attainable atomic flux. 

• The beamsplitters and/or mirrors used in constructing free-space atom in-

terferometers - an atomic 'ruler.' 

We begin by discussing the design and construction of the Raman laser-system, 

and then characterise its use by coupling the hyperfine states of a magnetically 

confined ®^Rb Bose-Einstein condensate. This allows the production of an atom-

laser beam, which will be investigated in more detail in chapter 7. The laser 

system was then refined for use as an atomic beamsplitter for the first BEC-

based free-space Ramsey interferometer, and we highlight these results. 

6.1 Basic Principles of the Raman Coupler Laser-System 

The goal of our Raman coupler is to drive transitions between the = l , m f ) 

and \F = 2, m'p) hyperfine ground states of where F and mp are the total 

and and projected angular momentum quantum numbers respectively. A m ^ = 

m'p - n ip = ±1, 0 for large one-photon detuning due to conservation of angular 

momentum [152]. An example of such a transition is given in figure 6.1 for 

A m p This particular transition can be used to derive an m p = 0 atom 

laser from a magnetically confined B E C in the |1, -1 ) state. 

Several critical features nuist be demanded when designing the Raman-Laser 

system: 

1. We require two lasers fields, with a tuneable frequency difference (on the 

order of 6.83 GHz for to allow control of the two-photon detuning, 5 

hi figure 6.1. 

'Note that the external momentum of the atoms is impHcitly included in this level diagram. 
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Figure 6.1: Simplified energy level diagram for Raman transitions on the D2 line of ^'^Rb. 

with both hyperfine and zeeman splitting shown. An example Am f = 1 Raman transition is 

shown, which we would use for outcoupling an atom laser from a BEC in the |F = 1, mp = —1) 

ground state. A complete energy level diagram for the D2 line ®''Rb can be foimd in [100]. 

2. A stable relative phase between the two lasers particularly important for 

interferometers. 

3. Intensity control and t iming for pulse shaping. 

4. Clean and simple spatial modes (e.g. Gaussian), ideally identical for each 

laser beam. 

Point 3. is readily achieved by using an A O M , driven by a frequency synthesiser 

and pulse generator. Point 4 is also readily achieved by using an identical optical 

fibre for each beam, or better yet, coupling both beams into the same fibre with 

orthogonal polarisations. 

Points 1. and 2. demand the phase-locking of two laser fields with a tuneable 

frequency difference. Phase-locking of two (for example) ECDLs has been previ-

ously achieved using the optical phase-locked loop (OPLL) technique [153, 154]. 

Briefly, this technique requires superimposing a small pick-off from the two lasers 

onto a fast photo-detector and measuring a microwave beat signal, which is then 

mixed down using a stal)le microwave reference, generating a phase-sensitive er-

ror signal. One laser is used as the master, and detuned (and ideally frequency 

locked) from resonance by A . The error signal is then fed back to the other (slave) 

laser with sufficiently high bandwidth, narrowing the relative line width l)etwecn 
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the two lasers. While OPLLs offer flexibility and controllability, they require fast 
microwave electronics and high bandwidth feedback 10 MHz [155]). 

Another approach is to source two frequencies from a single ECDL by using a 
frequency shifting element; doing so ensures a common phase, with relative-phase 
fluctuations governed only by details of the chosen optical elements and setup, 
rather than the quality of an electronic phasc-lock. AOMs are a connnonly used 
frequency shifting element, and are available in the several-GHz band. However, 
at microwave frequencies, they suffer from excruciatingly low shifting efficiency 
(< 3% at 3.4 GHz), and poor rejection of the unshifted frequency. This makes it 
difficult to isolate the shifted frequency, which needs to be amplified in order to 
recover the necessary laser power for driving power-hungry Raman transitions. 
Instead, we choose to use an EOM, which is capable of modulating the phase 
of the laser at microwave frequencies. This generates frequency sidebands at 
multiples of the modulation frequency, which can be chosen to be an integer 
fraction of the hyperfine splitting in ^^Rb. 

We now give a theoretical description of phase-modulated light interacting 
with a three-level atom. Consider the phase-modulated clectric field, written in 
complex notation:^ 

EpA/(0 = (6.1) 

where oJc is the frequency of the of the unmodulated ECDL, called the carrier 
frequency, is the EOM modulation frequency, and 0 is the modulation depth. 
Using the relation: 

oo 
(6.2) 

n= — oo 

where Jn is the n"® order Bessel function of the first kind, we can write the 
modulated clectric field as a sum of the carrier field, and sidebands at ±nujm 
relative to the carrier frequency: 

oo 

E P M ( 0 = EO (6.3) 
n=-oo 

It is now apparent that Jn{(t>/2) is the amplitude of the n"' order sideband (with 
the order "sideband" being the carrier). Figure 6.2 plots the first six Bessel 
functions over the range 0 < 0 < tt; a typically obtainable range using an 
EOM. Furthermore, each sideband has a well defined phase relative to every other 

^At a given point in space. 
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Figure 6.2: Bcsscl functions of the first kind. J„, plotted on a logarithmic scale as a function 

of the modulation depth for 0 < n < 5. For a typically feasible EOM modulation depth of 

(/) = TT. the Bessel functions, and therefore the sideband amplitude, rapidly decreases with n. 
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Figure 6.3: Phasor diagram for a phase-modulated electric field. Complex phasors for each 

sideband evolve in a plane perpendicular to the frequency axis indexed by n. 

sideband and the carrier. This can be siunmariscd iising the 3-dinicnsional phasor 

diagram given in figure 6.3. Each sideband is represented along the frequency axis 

(labelled by n) by a phasor in an orthogonal complex plane. These are shown in 

blue for f = 0 and |n| < 2. All phasors then rotate aromid the frequency axis in 

time, at their respective sideband frequency. In the rotating frame of the carrier, 

the nth sideband rotates at nuim-

Now, assuming that cjq is the resonant frequency of the desired ^^Rb hyi)er-

finc transition, then provided kum = t̂ o with k a non-zero integer, there will 

exist pairs of sidebands in the phase-modulated beam, which satisfy the Raman 
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rcsonaiicc condition. I.e. the nth sideband pairs with the (n + A-)th sideband to 

satisfy resonance. At first glance, it may then be tempting to attempt driving 

Raman transitions directly with a phase-modnlated laser beam. Indeed, each 

resonant freqnency pair conples a two-i)hoton transition. However, the contribn-

tion from all pairs destrnctively interferes to produce zero net coupling, provided 

ujm > and A > Um, where = d • Eo/h, as defined in chapter 4.^ 

To see this, consider the result from chapter 4 that the effective Rabi frequency 

is given by = where Qi and now characterise the effective coupling 

between states |1) and |e), and |2) and |e) respectively; and we have included the 

comi)lex conjugate for generality [consider the phase factors in equation (4.16)]. 

Thus, in the case of phase-modulated light, each resonant pair will contribute to 

the effective Rabi frequency. By considering all such pairs, it can be shown that: 

= Oo (6.4) 

n=—oo 
oo 

= n^ (6.5) 

n=—oo 

where we have used LJC and uj-k to define an appropriate rotating frame (i.e. 

LJc = Wi and uj-k = u!2 in figure 4.1). As a result, the rotating wave approximation 

only eliminates time dependence for the carrier term, and the —k sideband term in 

and respectively. Taking the product of these, the effective Rabi frequency 

is then: 

n=—OO m=—oo 

In using the result fig = — w e are assuming that A » oJm so that adiabatic 

elimination of the excited state applies for all resonant sideband pairs. More 

specifically, for n = 4, the sideband amplitude is already three orders of magni-

tude lower than the carrier over reasonable modulat ion depths, as can be seen in 

figure 6.2. Thus, practically speaking, A greater than a few times uJm is sufficient. 

Now, only for terms with m = n + k do the products in equation (6.6) represent 

resonant pairs of sidebands. Terms with m ^ n + k are detuned off (two-photon) 

resonance by {m - n - k)uim, the magnitude of which is always > Thus, we 

may restrict the sum to m ^ n + k provided u;^ > as stipulated earlier. As 

an example, typical values for experimental parameters give f ^o / ^ ~10-100kHz. 

^We assume the dipole moment for each one-photon couphng is equal for simphcity. This is not so 

in general. 
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whereas Um ~ 0.1-1 GHz. Thus, we may write: 

q2 
^̂ e = ^ J„(0/2)J„+,((/>/2) (6.7) 

n=—oc 

This specific sum of Bessel functions is zero, which can be seen in the following 
way. Consider the function S{x) = '^n{x)Jn+k{x), and its derivative: 

oo 
S'{X) = Y . + (6-8) 

n= —OO 

Using the relation J'^{x) = \[Jn-\{x) - J„+i(x)], and relabelling the sum gives 
5 ' (x ) = 0 for all x and k. A further property of Bessel functions is J„(0) = 0 for 
all n ^ 0. Thus, S{x) = 0 for all x and k. We have tested this result extensively, 
and were unable to drive Raman transitions in stationary clouds using pure 
phase-modulated light over a large range of one-photon detunings (1-300GHz), 
and several modulation frequencies {k = 1-3).'' 

Thus, the task at hand is to modify the phase-modulated light in a way to 
prevent total destructive interference of the different terms. As we shall see, this 
effectively arnomits to (at least partly) converting phase-modulation to either 
polarisation- or amplitude-modulation, both of which can drive Raman tran-
sitions. For the work in this thesis, we choose two distinct methods for each 
application: 

• For atom-laser outcoupling, and performing the comparison of outcouplers 
in chapter 7, we combine a phase-modulated beam, and an unmodulated 
(carrier) beam from the same ECDL with orthogonal polarisations. As 
a result, rather than the electric fields interfering to produce amplitude-
modulation, there is a modulation of the plane of polarisation at the reso-
nance frequency. 

• For use as a beamsplitter in a Ramsey interferometer, we combine an un-
modulated carrier beam with the phase-modulated beam with the same 
polarisation. This constitutes an optical interferometer with the EOM in 
one of the interferometer arms, and results in amplitude-modulation. 

Both of these cases are considered in the next sections, including a more detailed 
description of polarisation- and ami)litudc-modulation. 

•̂ See section 6.3.1 for a discussion of how a moving cloud can break the synnnetry of equation (6.7) 
due to the Doppler shift. 
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6.2 The Raman Laser System as an Outcoupler 

Wc now discuss application of the Raman laser system as an atom-laser out-

coupler. The requirements for atom-laser outcoupling arc different to those for 

Ramsey interferometry, and as a result the laser systems are slightly different for 

each. For example, for outcoupling from a magnetic trap, we arc interested in 

changing the m p state of the atoms, as well as transferring momentum during 

the transition to help reduce divergcncc and maximise flux (discussed in detail 

in chapter 7). Furthermore, the requirements on the relative-phase stability of 

the Raman beams is somewhat relaxed, as the goal is to provide a weak coupling 

between trapped and untrapped atomic states, and the phase of the outcoupled 

beam is less important when considering applications in interferometry. O n the 

contrary, for beamsplitting, relative-phase stability will limit the sensitivity of 

any atom interferometer, and at best should be stable at or below the atomic 

projection-noise limit. 

6.2.1 Laser Setup 

Production of the two Raman laser beams for use as an atom laser outcoupler is 

schematically represented in figure 6.4. Laser light is sourced from a home-built 

grating-stabilised ECDL , red-detuned by A ~ 90 GHz from one-photon reso-

nance in order to suppress spontaneous emission to the level required to prevent 

heating of the BEG. The light is first sent through an A O M in a double-pass 

configuration to allow for intensity control, and fast shuttering on the order of 

100 ns, before being split equally at a polarising beamsplitter. One is left unmod-

ulated and coupled into a polarisation maintaining optical fibre. The other beam 

is phase-modulated using a fibre-coupled l ithium niobate phase-modulator (EO-

Space PM-0K5-10-PFA-PFA-780-UL). These modulators have the advantage of 

low power requirement, with a half-wave voltage® of ~ 3 V into 5 0 r e q u i r e no 

aligmnent other than standard optical fibre coupling, and have a typical insertion 

loss of about 50%. We drive the phase-modulator at Um = UJQ/2 ~ 3.415 GHz 

using a Rhode k Schwarz SMR-20 microwave frequency-generator. The side-

bands in the modulated beam can be monitored using a commercial confocal 

fabry-perot cavity (Thor Labs SA210-5B) with a free spectral range of 10 GHz. 

At = 3.415 GHz, we measure 20% of the total output power in each of the 

second order sidebands, with the carrier suppressed to less than 5%. The remain-

ing power is distributed among the first and higher order sidebands, which are 

®Half-wave voltage is that required for a modulation depth of </> = TT. 



3 . 2 The Rmuan Laser System as an Outcouplcr 85 

Figure 6.4: Laser-system setup for the production of two Raman laser beams for atom-laser 

outcoupling. separated in frequency by ~ 6.8 GHz. ECDL: external cavity diode laser. 01: 

optical isolator. A/2: half-wave plate, A/4: quarter-wave plate, PBS: polarizing beamsplitter 

cube, AOM: acousto-optic modulator used for intensity control and fast shuttering. M: mirror. 

FC: fiber coupler, and EOM: electro-optic modulator driven by a ~ 3.4 GHz sine wave. A 

phasor diagram of the frequency components in each of the two Raman beams is included after 

each fibre coupler. Note that higher order sidebands are present in the modulated beam, but 

only first order are displayed in the diagram. 

off-resonant when paired with the carrier, and do not contribute to the Raman 

conphng. It is important to minimise power in the carrier, as this suppresses 

formation of a standing wave with the unmodulated beam, which can result in 

diffraction of the condensate as well as the outcouplcd atoms. This is the pri-

mary reason for choosing tUm = ^^0/2, as the microwave frequency-generator has 

a limited power output, and the EOM half-wave voltage generally increases with 

(Mm- At this stage, one could couple both beams into a single fibre to ensure 

identical spatial modes. However we find this stej) unnecessary for atom-laser 

outcoupling as both l^eams originate from identical single-mode optical fibres, 

connected to identical fibre collimators. The laser-system results in two colli-

mated beams with ~ 1 mm diameter, and approximately 4 and 8niW for the 

modulated and unmodulated beams respectively. 
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6.2.2 Outcoupler Geometry 

To test and characterise the outcoupler, we prepare BECs of ®'Rb in the |1, -1) 

state of typically 2.5 x lO"̂  atoms with no discernible thermal fraction. Our loffe-

Pritchard magnetic trap has trapping frequencies of o.-̂  = 12 Hz and = 128 

Hz, a field gradient of 200G/cm, and a stable bias field of 2 0 at the trap min-

imum allowing highly reproducible atom laser production. Raman outcoui)ling 

is applied using the three-level coui)ling scheme of figure 6.5(a) with the Raman 

beams directed onto the condensate using the geometry shown in Fig. 6.5(b). We 

focus each beam using 10 cm and 50 cm focal length lenses for the horizontal 

and vertical beam respectively,® which ensures a high intensity, and therefore 

a high Rabi frequency. This configuration was chosen for its simi)licity regard-

ing characterisation of the coupler. It allows the beam i)olarisation to be set to 

(ideally) pure cr+ for the modulated beam, which propagates along the magnetic 

trap bias field direction and (ideally) pure tt polarisation for the unmodulated 

beam, which propagates orthogonal to bias field direction. This ensures that 

only the transition in figure 6.5 is possible, i.e. a photon is absorbed from the 

u;+2 sideband in the horizontal beam via a cr""" coui)ling, and emitted into the 

>̂3/2 

- 780.24 nm 

F ' = l 

A ~ 90 GHz 

F = 2 

6.8 GHz 

^ C : |1,-1> 

•Bo 

1.3N[Hz 

mF= -2 -I 0 1 2 

F = 1 

Figure 6.5: (a) Energy level scheme for outcoupling. and (b) Raman beam geometry. Only 

the F' = 1 manifold of the 5'̂ P3/2 excited state of is shown. S is the two-photon detuning. 

The bias field. Bq. is directed along the long axis of the condensate. We direct the modulated 

Raman beam along this direction, with circular polarisation to drive absorption of a ct^ photon 

from the sideband. The unmodulated Raman beam propagates upwards and is linearly 

polarised along Bq to drive emission of a tt photon. The two-photon transition gives the 

outcoupled atoms a net momentmn kick of y/2hk i)roducing a beam in the continuous regime. 

These focal lengths are chosen simply due to space limitation in the experimental setup. 
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iimnodulatcd carricr beam via a tt coupling. This results in a nioinentuni trans-
fer of \/2hk at 45° relative to the vertical beam, shown by the diagrannnatic 
atom-laser in figure 6.5(b). For other beam orientations, for example one which 
outcoTiples atoms with a downward momentum transfer, each beam may contain 
a combination of a"'", cr", and tt polarised light. The presence of a a~ component 
in the modulated beam, for example, drives the same Raman transition with an 
opposite momentmn kick due to absorption from the carrier and emission into 
the lower sideband, producing a second atom-laser beam. A downward coupled 
atom laser may be more practical for certain applications, and one remedy to the 
issue of multiple resonances is injection locking of a slave laser-diode to a partic-
ular sideband of the modulated field, which effectively selects just one frequency 
from the phase-modulated beam. We now routinely implement injection locking 
in our laboratories. 

6.2.3 Polarisation Modulation 

We now highlight an intriguing observation: that this particular configuration of 
the two Raman beams results in a modulation of the plane of polarisation of the 
electric field at the resonance frequency. The simplest way to see this is to write 
the electric field for the horizontal and vertical beams as: 

Eh{t) = Eh [cos[(cc;c + 2uJm)t], sin[(a;e + , 0] (6.9) 

E , ( / ) = £;,[O,O,cos(u;e/ + 0)] (6.10) 

where 9 is some general phase difference between the two beams, and 2iOm = oJq-
If we consider the total electric field, = E/,(f) + Ey{t) and time-average 
over a single optical period, we find a constant amplitude in time. On the other 
hand, consider the area which is swept out by E , ( 0 over a single period. This is 
represented by the blue circles in figure 6.6, and defines the plane of polarisation 
at time t. If we advance t, and monitor the orientation of this plane, we see it 
oscillates in two dimensions preccssing about the 2-axis in the figure (z rei)re-
sents the direction of propagation for the horizontal beam). This motion is akin 
to a "wobbling plate" thrown into the air.^ The precession is rei)resented using 
the black vector, which is normal to the blue plane. The red circle, which should 
be visualised as centred on the z-axis in the yz-plane, shows the trajectory of the 

^There is an interesting story told by Feyiiman about iiow he observed tiie wobble of a plate thrown 
into the air at a cafeteria, whose motion lie tiien proceeded to analyse [156]. "Feynnian's wobbling 
plate" has even received attention in the literature, with an analysis of the motion given in [157). 
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t = 0 t = 0 . 2 T O t = 0 . 4 T O 

t = 0.6ro t = Q.Sto t^To 

Figure 6.6: Schematic representation of polarisation-modulation, resulting from the super-
position of two orthogonal electromagnetic waves with slightly different frequencies. The blue 
circle represents the plane of polarisation at time t. The black vector is normal to this plane in 
all figures, and is used to help guide the eye. This vector, and therefore the polarisation plane, 
preccsses around the 2-axis, completing one full cycle in a time TQ = lixj^jQ. The trajectory of 
the normal vector is represented by the red circle, which is centred on the 2-axis. Thus, the 
plane of polarisation is modulated at the hyperfine-resonance frequency WQ-

normal vcctor in time, to help guide the eye. The figure plots six orientations 
of the polarisation plane, at values of t ranging from f = 0 to f = TQ, where 
To ^ 27r/a;o - the period of the microwave frequency corresponding to resonance. 
We sec that at F = TQ, the plane of polarisation has completed one full oscillation, 
and is thus modulated at the hyperfinc resonance frequency. This observation 
will be contrasted to the presence of amplitude-modulation, when we discuss 
operation of the Raman coupler as an atomic beamsplitter in section 6.3. 

6.2.4 Ou tcoup le r Cha rac t e r i s a t i on 

To characterise the outcoupler, we apply the Raman beams with a given pulse 
shape, directly after evaporation to BEG. The magnetic trap is then suddenly 
switched off. allowing all atom clouds to expand for 15 ms. The atoms arc then 
illuminated by a 100//s pulse of resonant light, and imaged onto a CCD camera. 
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Figure 6.7: Resonance curves for the (a) weak- and (b) strong-coupling regimes, showing 
the lineshape of the resonance and the effect of the AC Stark shift. In (a), wc use a 100 ms 
outcouphng pulse and plot the number of atoms remaining in the condensate as a function of 
two-photon detuning. The solid line is a fit to the experimental data using a Thomas-Fermi 
approximation, and integrating over a resonant slice of the wavefunction. In (b), the relative 
number of atoms transferred to the F = 2 ground state is plotted as a fmictioii of two-photon 
detuning. A envelope function of equation (2.27) is fitted to the data (solid line) to determine 
the centre of the resonance. In both data sets, zero detuning corresponds to the centre of the 
Raman resonance for weak coupling, and error bars represent one standard deviation in the 
total atom number. 

Outcouplcd atoms arc displaced to the side, and away from the BEC for this 

expansion time, due to the momentnm transfer from the Raman transition (see 

figures 6.8 and 6.9). 
Based on our experimental parameters, we estimate the maximum intensity at 

the condensate to be on the order of lOW/cm^ leading to a maximuin calculated 
Rabi frequency of fig = 27r x 20 kHz. Our setup can be operated in the continuous 
weak-coupling regime, or in the ijulsed strong-coupling regime. 

To define the microwave frequency operating points, we measure resonance 
curves for both weakly- and strongly-coupled systems.® In the weakly-coupled 

*'\Veak' and 'strong' here can simply be understood to mean continuous atom-laser and pulsed 
atom-laser respectively. A formal definition can be found in chapter 7. 
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system, wc use a Rabi frequency of ~ 27r x 200 Hz. and a long Raman pulse 
of 100 ms, plotting the luunber of atoms remaining in the condensate in figure 
6.7(a) as a function of the two-photon detuning S. The solid line is a theo-
retical fit based on an integration of the Thomas-Fermi density, \il){x,y, = 
^ [//. - Y {uly^ + uj'̂  + -2^])] over a energy width of hQe centred on resonance. 
Flux is then modelled as directly proportional to this mnnber multiplied by Vie-
as was done in [54]. U — Anh^a/m is the effective atomic interaction strength, a 
the s-wave scattering length, // = the chemical po-
tential, with N the total munber of condensate atoms, and m the atomic mass 
of ^^Rl:). We take (5 = 0 to be the minimum of this curve. 

In the strongly-coupled regime, a 60 /.is Raman pulse is used for our maximum 
measured Rabi frequency of fig — 27r x 10 kHz, and the relative number of atoms 
transferred to the |2. 0) groimd state is plotted as a function of S in figure 6.7(b). 
The solid line is a fit to the data, based on the envelope of the two-level atom 
model [see equation (2.27)], used to extract the operating point from the data. 
This maxinmm point occurs at 5 = —27r x 1.5 kHz, and gives a measure of the 
maximum relative AC Stark shift in this system. 

Although we have estimated an upper bound on the maximum Rabi frequency 
of our outcoupler, accurate knowledge of the light intensity at the condensate is 
difficult to obtain. It is therefore important to calibrate the Rabi frequency for 
any given setup. This is accomplished by comparing experimental data with 
a 3D mean-field calculation. The Raman lasers are applied to the condensate 
for a fixed pulse length of 135 ^s, and the power in the beams varied. This 
outcouples a pulse of atoms in the |2,0) state, whose relative number depends 
on Qg, and is plotted in figure 6.8(a) as a function of the total power in the two 
beams. The calibration is then extracted by fitting the experimental data to a 
3D simulation of the GPE based on measured parameters of our system. Our 
maximum attainable Rabi frequency is on the order of 27r x 10 kHz. 

In figure. 6.8(b), we demonstrate coherent Rabi oscillations at the maximum 
Rabi frequency for this setup. The solid line again represents a 3D simulation 
of the GPE for our experimental parameters. For complete Rabi oscillations to 
occur, it is necessary for the spatial wavefunctions of each state to remain well 
overlapped over the duration of a Rabi cycle. As the |2,0) state receives an 
initial momentum kick in addition to experiencing acceleration diie to gravity, 
complete transfer was not observed, with a maximum transfer of ~ 75% in the 
first oscillation. Over time, and successive oscillations, the overlap continues 
to decrease and a decay in the Rabi oscillations is observed. This behaviour is 
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Figure 6.8: (a) Calibration of tlie two-photon Rabi frequency. The circles represent the relative 

number of atoms in the j2,0) state as a function of total power in the Raman beams, (b) Rabi 

oscillations between the |1, -1) and |2,0> hypcrfine ground states of ®''Rb. The relative number 

of atoms in the F = 2 ground state is plotted as a function of pulse time, with a oscillation 

frequency of ~ 10 kHz. Incomplete and decaying oscillations are observed due to an imperfect 

and decreasing overlap of the wavefunctions for the two coupled states in time. In both data 

sets, the error bars represent one standard deviation in total atom number and the solid line is 

a simulation of the GPE for our experimental parameters, which allows calibration of the Rabi 

frequency in (a). 

qualitatively captured by the numerics. One i)0ssiblc reason for tlie quantitative 

discrepancy is that the simulation assumes a uniform Rabi frcqucncy across the 

condensate, whereas in the experiment we focus the beams to maximise the 

intensity. This could result in a intensity gradient across the cloud. In future 

applications, wc could use larger beams with a relatively fiat intensity profile to 

mitigate this effect. 

Figure 6.9, shows an absorption image of a atom-laser produced by the Ra-

man outcoupler for 9 ms of outcoupling. The condensate is released at tlie end 

of this 9rns, and the atoms arc allowed to expand for a further 15 ms before an 

absorption image is taken. The beam is disi)laccd horizontally from the BEG due 

to the horizontal component of the momentum transfer by the Raman transition. 

It is also displaced vertically because of the vertical component of the transferred 

momentum. It should also be noted that it represents the last 9 ms of a 24 ms 
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Figure 6.9: Absorption image 
of a typical atoni-lascr, outcou-
plcd for 9 ins using the hyperfinc-
Raman outcouplcr. The Raman 
couplcr readily produces these 
low divergence, clean atom laser 
beams. A horizontal and verti-
cal displacement from the BEC 
its the result of the momentum 
transfer of the Raman transi-
tion at 45° to (downward) verti-
cal. The atomic trajectory cor-
responds to the last 9 ms of a 
parabolic trajectory, evolving for 
a total of 24 ms. due to 15 ms of 
free expansion before the absorp-
tion image is taken. 

0.9 
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parabolic trajectory, and as such looks relatively vertical. In chapter 7, a de-
tailed comparison between this hyperfine-Raman outcoiipler, a Zeeman-Raman 
outcouplcr, and an RF outcouplcr will be presented. 

6.3 The Raman-Laser System as an Atomic Beamsplitter 

We now turn to using the EOM based Raman laser-system as an atomic beam-
splitter. In general, this could be used to build either a Mach-Zehnder, or Ramsey 
interferometer. However, for the work in this thesis, we apply it to a free-space 
Ramsey interferometer, which utilises a low-density, freely-falling, |1,0) atom-
laser pulse as the atomic source. Using the EOM with a novel modification to 
the system so far presented, allowed passive phase-stabilisation, enabling opera-
tion of an atomic shot-noise limited Ramsey interferometer, as presented by D. 
Doring et al. in [105]. 

In addition to requiring a highly-stable relative phase, a Ramsey interferome-
ter uses a co-propagating Raman transition, with negligible momentum transfer 
and spatial separation between states (see section 3.3). Furthermore, it is typical 
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Figure 6.10: Energy level diagram for the Raman transition between the clock states 
used for our free-space Ramsey interferometer 

to couple the first-order magnetically insensitive ^^Rb clock states, |1, 0) |2, 0). 
The required Raman-transition is shown in figure 6.10. We again need to modify 
the phase-modulated light in order to couple this Raman transition, and in this 
case we superimpose a phase-shifted carrier beam with the EOM output . To do 
this, the EOM is placed into one arm of an optical interferometer. As we will 
see, this to produces a partly amplitude-modulated beam. Figure 6.11 shows two 
interferometer configurations including the EOM; a Mach-Zehnder in (a) and a 
Sagnac in (b). 

To see how these configurations can drive Raman transitions, consider the 

electric field at the output beamsplitter, given by: 

E ( 0 = En (6.11) 

where 6* is a general phase-shift between the carrier in the umnodulated and 
modulated beams. If we assume E,) is the electric field entering the interferometer, 
then in general A^ + B"̂  < 1. Equality corrcsi)onds to a lossless system with 
A^ = D"^ 1/2 for a 50:50 beamsplitter. Of course, the EOM and other optical 
components have associated losses, and A^.B"^ < 1/2 in general. Using the three-
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Figure 6.11: Raman laser-system setups for our Ramsey atom interferometer, from [105]. (a) 

EOM placed inside an optical Mach-Zelinder interferometer, which requires active stabilisation 

to lock the relative phase of the modulated and unmodulated beams, (b) EOM used in an 

optical Sagnac interferometer, which has a high passive stability, as phase fluctuations are 

common to both paths. 

level atom formalism from chapter 4, it can be shown that: 

CXD 

ih = AQoe"'' + Bflo Y . 

n = - o o 

oo 

ih = + BQo Y^ 

(6.12) 

(6.13) 

where. as for equations (6.4) and (6.5), iUc and co—f; have been used to define 

the rotating frame, and the rotating wave approximation has been applied. The 

effective Rabi frequency is then: 

2A 
= - i M f i , 4 ( 0 / 2 ) ^ [ (- l )V^ + e-'^ 

= 

-zMB4(0/2)5 icos(0) , even k 

, t'+'ABMcf>/2)fsm{0), odd k 

(6.14) 

where we again neglect off-resonant terms, assuming > We see that for 

even k. S = jir gives the maximum magnitude for Qe, with j an integer. Whereas 
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for odd k, 6 = {j + l/2)7r gives the maximum magnitude for Ug- Although not 
innnediatcly obvious, this result is equivalent to the output field having a non-
zero intensity-beat at the resonance frequency - an amplitude modulation. To 
help see this, we now l)riefly discuss amplitude-modulation and comparc it to 
phase-modulation. 

6.3.1 Ampli tude Modulation 
Consider an amplitude modulated field, which can be written as: 

EAA,{t) = Eo[l + M 
= Eo + + (g 15) 

where M is the modulation depth. Amplitude-modulation also produces side-
bands, although in this ease there are just two at uJc i ^m- The intensity of this 
field is proportional to: 

ap AP 1 + — + 2AIcos{Umt) + -Y cos(2a;^0 (6.16) 

which has two beat frequencies, one at ujrn resulting from the beat between each 
sideband and the carrier, and one at 2uJm resulting from a beat between the 
sidebands themselves. Often in practice, AI < 1 and the 2uim component is 
smaller than the LUm component by a factor of AI. 

In figure 6.12, we compare amplitude-modulation in (a) to phase-modulation 
in (b) using a phasor diagram like that of figure 6.3. In particular, note the 
different phase relationship between the carrier and the P ' order sidebands for 
amplitude-modulation and phase-modulation, which is rei)resented by the angle 
between the sidebands and the carrier. For phase-modulation, they arc orthog-
onal, whereas for amplitude-modulation they are parallel. In general, odd side-
bands are orthogonal to the carrier, and even sidebands parallel to the carrier 
in a phase-modulated beam. It is this particular phase relationship which re-
sults on a cancelation of all beats in the case of pure phase-modulation, leading 
to a constant intensity in time. If however this phase-relationship is modified, 
for example by shifting the carrier-phase (corresponding to a rotation about the 
frequency axis), then this cancellation no longer occurs, as the carrier now has 
comi)onents parallel to the odd sidebands, and a reduced amplitude with respect 
to the even sidebands. 
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Figure 6.12: Comparing piiasor diagrams for (a) an amplitude-modulated electric field, and 

(b) a phase-modulated electric field, (b) Is identical to figure 6.3. In both eases, phasors arc 

drawn at ^ = 0. Notice that for amplitude-modulation, the sidebands arc parallel to the carrier, 

whereas for phase-modulation, only the even sidebands are parallel to the carrier. Although 

not shown, every even"' order sideband is out of phase with the adjacent even"' order. 

In the ease of the Raman eoupler we superimpose a second carricr beam 

[the dashed phasor in figure 6.12(b)] onto the phase-modulated beam. This sec-

ond carrier can then be amphtude-modulated by the sidebands in the phase-

modulated beam by the previous reasoning. Comparing (a) and (b), if the 

additional carrier has 0 = 0, then it has an amplitude-modulation-like phase 

relationship with even sidebands, whereas if 0 = 7r/2, it has this relationship 

with the odd sidebands. Thus there will be an intensity beat at even and odd 

multiples of the modulation frequency for each respective case. For a general 

phase, the even and odd beats will be proportional in magnitude to cos(0) and 

sin(6') respectively. With respect to driving a Raman transitions, it is the k^^ 

sideband which satisfies two-photon resonance with the additional carrier, and 

thus the result of equation (6.14) is equivalent to the presence of an intensity 

beat at kum = the hyperfine-resonance frequency. 

It is worth pausing at this point to highlight an interesting classical picturc. 

We have seen that it is necessary to have cither a polarisation-modulation, or 

amplitude-modulation at the resonance frequency, in order to effectively drive 

a Raman transition. Both of these cases correspond to a modulation of a the 

electric field at the resonance frequency - either a modulation in its direction, or 

its magnitude. If we model our atomic resonance as a classical dipolc - charges 

connccted by a spring, with resonant frequency lvq - then both polarisation-

and amplitude-modulation generates a driving force at the spring's resonance 

frequency. 
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6.3.2 A t o m i c Beamspl i t ter Characterisation 

A coriscqucncc of equation (6.14) is that 9 should be stable in time. Any insta-
bilities will lead to fluctuations in the Rabi frequency and thus the efficacy of the 
Raman beamsplitter. What this implies for the case of the Mach-Zchnder design 
in figure 6.11(a), is that the optical interferometer must be actively stabilised in 
order to stabilise 6. This is done by using a homodyne detection at one of the in-
terferometer output ports, and using this to feedback to one of the interferometer 
mirrors attached to a piezo, as shown in figure 6.11(a). Thus, the bandwidth of 
this lock will directly impact the stability atomic beamsplitter. One could just as 
well build a suitable optical cavity, and correspondingly demanding lock, which 
filters the EOM output. 

A far more attractive option is to use the EOM in an optical Sagnac interfer-
ometer, as shown in figure 6.11(b). This design rehes on a useful byproduct of the 
principle of operation of the fibrc-coupled EOM. Namely, that it is a directional 
device with effective phase-modulation occurring in one propagation direction, as 
specified by the arrow in figure 6.11. Thus, one optical path around the Sagnac is 
effectively modulated, while the opposing path is not; giving us the desired result 
at the output of the beamsplitter. Both the modulated and unmodulated beams 
travel around a common optical path, allowing for a strong passive rejection of 
relative phase-noise, such as that induced though mechanical vibrations of the 
optical elements, and temperature drifts of the fibre. 

In the Sagnac configuration, the phase difference between each path around 
the interferometer is 6* = tt due to the beamsplitter (one path has an external 
and internal reflection, the other has two transmissions). Thus, from equations 
(6.14), we see that choosing an even k will maximise the Rabi frequency. Equiv-
alently, there should be a maximum amplitude-modulation at even multiples of 
Wm, resulting in a beat signal at these frequencies. In figure 6.13, we measure the 
amplitude of a beat signal at 1, 2, and 3 GHz, for iOm = IGHz, as a function of 
the EOM drive voltage. Blue triangles, red circles, and black squares correspond 
to beat signals at 1, 2, and 3 GHz {k = 1, 2, 3) respectively. There is a clear 
suppression at odd multiples of and the residual signal at these frequencies 
is likely the result of imperfect alignment of the polarisation to the EOM mod-
ulation axis. Higher order sideband beats are not measured due to the rapidly 
dhninishing amplitude of these sidebands, as seen in figure 6.2. 
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Figure 6.13: Beat signal from an optical Sagnac with an EOM in the interferometer arms, as 
a function of the EOM drive voltage, from [105]. Vq is an arbitrary reference voltage. The EOM 
is driven at Wm = 1 GHz. For a Sagnac interferometer. S = w, and thus we expect the signal 
at odd multiples of the modulation frequency to be suppressed. Blue triangles, red circles, and 
black squares correspond to beat signals at 1. 2, and 3 GHz {k = 1, 2. 3) respectively. Figure 
courtesy of D. Doring. 

6.3.3 Resultant Ramsey Fringes 

We now present atom interferomctry results, in order to highlight the effectiveness 
of the Raman coupler as a beamsplitter, which is able to produce an atomic 
projection-noise limited Ramsey interferometer [105]. This work was conducted 
in collaboration with D. Doring et ai, and is not the focus of this thesis. It is, 
however, an important product of the Raman coupler. Specifically we present 
the results of two free-space Ramsey interferometers, one using the Mach-Zehnder 
configuration [151], and the other using the Sagnac configuration [105 . 

We only briefly describe the general experiment here. A more detailed account 
can be found in [105, 151], In particular, measurement at the atomic shot-
noise limit required not only a sufficiently quiet beamsplitter, but also suitable 
absorption imaging and number counting/calibration. Details of the detection 
system can also be found in [105], and in the theses of G. D. McDonald [143], 
and D. Doring [158], 

After producing a BEG, as described earlier, we outcouple a pulsed atom-
laser in the |1,0) state using RF outcoupling. This pulse typically contains on 
the order of 10^ atoms. It evolves freely under gravity, falling through two 
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Figure 6.14: Optical setup for generating the two Ramsey interaction zones, from [151]. 

Raman interaction zones sitnatcd on the order of 100 /.im below the magnetic trap 
mininmm. The interaction zones arc two parallel light-sheets sourced from either 
the Mach-Zehnder or Sagnac configuration Raman coupler, and separated verti-
cally by ~ 300//m. The intensity of each light-sheet is adjusted to compensate 
for the difference in the speed of the cloud at each sheet, as well as any differ-
ence in the sheet thickness. This ensures both interaction zones correspond to a 
7r/2 pulse. Figure 6.14 smnmariscs this optical setup. The two light sheets are 
generated using a birefringent calcite crystal, residting in two emergent beams 
with orthogonal polarisation. The power in each beam is controlled by rotating 
the input (linear) polarisation with respect to the crystal axis using a half-wave 
plate. Two cylindrical lenses, one before and one after the calcite, produce the 
light sheets, ensuring that the focal point of each is well separated from the point 
at which they cross (as drawn in the figure). A quarter-wave plate is used to 
produce circularly polarised light for driving a transitions. 

After falling through the Ramsey interaction zones, the two clock states are 
spatially separated using the Stern-Gerlach effect, which separates different mag-
netic states using a magnetic field gradient. In this case, we are utilising the 
second order Zeeman shift, which also depends on the total atomic angular mo-
nientiun F. The field gradient is generated by pulsing the magnetic trap coils. 
Each state to is then simultaneously absorption imaged on the F = 2 F ' = 3 
transition, after repumping atoms from F = 1 to F = 2 using a short repmnping 
pulse (100/xs). This allows us to calculate the probability of measuring atoms in 
|2, 0) as p = t v T ^ ' where TVj is the munber of atoms in the state. 
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Figure 6.15: Typical interference fringes from an atom-laser based Ramsey interferometer, 

from [105], 

Figure 6.15 shows a typical set of ramsey fringes, and corresponding absorp-

tion images, from a Ramsey interferometer driven using the Sagnac configuration 

Raman coupler. The fringes arc scanned by varying the detuning [see equation 

(3.8)], which amounts to varying the microwave freciuency that drives the EOM. 

We observe a high fringe visibility, with a fringe period of 259.5(5) Hz correspond-

ing to r = 3.853(8) ms, extracted from a sinusoidal fit (red Hne). 

In figure 6.16, we compare fringes obtained using (a) the Mach-Zender config-

uration (from [151]) to those obtained using (b) the Sagnac configuration (from 

[105]). In both cases, each data point represents the average of 5 experimen-

tal runs, with the error bars giving one standard deviation. There is a clear 

improvement in the signal-to-noise ratio (SNR) for the Sagnac configuration. 

The Mach-Zehnder configuration gives a phase-uncertainty of ~ 240 mrad over 

5 experimental runs, whereas the Sagnac configuration gives ~ 5 mrad. This 

demonstrates the high level of passive stability for the Sagnac configuration, and 

that the Mach-Zehnder configuration was limited primarily by the stability of 

the optical Mach-Zehdcr interferometer, and its active lock system. 

The Sagnac configuration is in fact stable enough to produce a Ramsey inter-
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Figure 6.16: Ramsey fringes obtained using the hyperfine-Ranian coupler in (a) the Mach-
Zehnder configuration, and (b) the Sagnac configuration 

fcronictcr, limited primarily by atomic projection noise. Projection noise is most 
simply understood from binomial statistics. At the output of the interferometer, 
each of N atoms is in a superposition of two internal states, with a probability 
p for being in state |2,0). Upon measurement, the atom is projected into one of 
these states, and a sample with N atoms represents N trials of this proverbial 
'coin flip' experiment. In any given experimental nm, we measure p by measuring 
the number of atoms in each state, and binomial statistics then predicts that the 
variance in p is given by: 

J_ 
N' (6.17) 

(6.18) 

Typically, an interferometer is operated at mid-fringe {p = 0.5) to maximise the 
change in p for a given phase shift, and thus cTp = ^ is the atomic projection-
noise contribution. Additionally, there will be a contribution from i)hoton shot-
noise in the absorption imaging process. The details of this are beyond the scope 
of this thesis, other than to state that the photon shot-noise contribution scales as 

oc jf (see [143, 158] for details). Thus, for sufficiently large atoms numbers, 
atomic projection-noise will be dominant. 

Figure 6.17 shows the measured variance in p as a fmiction of total atom 
number for (a) a single beamsplitter operation, and (b) the full Ramsey interfer-
ometer cycle. The long-dashed lines represent the theoretical atomic projection-
noise, and the short-dashed lines represent the photon shot-noise. The solid 
lines arc their sum. Data points represent the experimentally measured standard 
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Figure 6.17: Atomic projection noise in (a) an atomic beamsplit ter , and (b) a Ramsey inter-
ferometer. 

deviation for 5-10 samples, with error bars giving the confidence in the measure-
ment due to the finite sample number. It is evident that quantum noise (atomic 
and photonic) arc the fundamental noise sources in both cases, particularly for 
the higher atoms numbers; demonstrating the excellent passive stability of the 
Sagnac configuration for the Raman coupler. 

6.4 Conclusions 

In this chapter, we have demonstrated a Raman laser-system that is a versa-
tile and effective tool for coherently manipulating atomic ensembles at the level 
required for atom interferometry. Operating via a pure two-state coupling, it 
produces atom lasers in a single atomic state and has the potential to trans-
fer correlation statistics from a quadrature squeezed optical beam, making it 
a promising tool for investigating quadrature squeezing of atom lasers and en-
tanglement in atomic beams. The same basic system, operated as an atomic 
beamsplitter between the hypcrfine ground states of was used to build 
a quantum projection-noise limited Ramsey interferometry, with a freely-falling 
atom-laser pulse as the atomic source. Although we have demonstrated oper-
ation of this system using the optical setup is relatively straightforward 
compared with other Raman laser-systems, such as OPLLs, and can easily be 
transferred to other atom species such as sodium, lithium, or caesium; as well 
as to other applications of Raman transitions. Chapter 7 will present a detailed 
comparison of the Raman laser-system to other typical atom-laser outcoupling 
systems. 



Chapter 7 

An Experimental Comparison of 
Atom-Laser Outcouplers 

Work in this chapter has been peer-reviewed and published in: 

J. E. Debs, D. Doring, P. A. Altin, C. Figl, J. Dugue, M. Jeppesen, J. T. 
Schultz, N. P. Robins, and J. D. Close. Experimental comparison of Raman and 
rf outcouplers for high-flux atom lasers. Phys. Rev. A 81, 013618 (2010). [159] 

In the previous chapters, wc have shown that Bosc-condensed sourccs offer 
attractive properties as atomic sources for atom interferometry-bascd inertial 
sensors, hi particular, atom-lasers were shown to have a substantially narrower 
momentum width than any other atomic source, hi addition to a low divergence 
and simple spatial mode, a high flux is desirable for maximising the SNR, espe-
cially when comparing devices at the shot-noise limit. The flux of Bose-condensed 
sources is currently limited by the repetition rate of a given BEC machine. This 
in turn limits the flux of the atom-laser, which can only be continuous over times 
less than the machine cycle-time. Such continuous sources will also be beneficial 
for combating the "Dick effect," which is the downsampling of high frequency 
noise in pulsed devices [160], such as the majority of current atom interferome-
ters. 

In producing a continuous Bose-condensed source, there is the cjuestion of 
pumping for an atom-laser: the ability to coherently pump atoms into a "lasing" 
BEC, which is being used as the source for an atom-laser outcoupler. Pumping 
has been extensively investigated by N. P. Robins et al., who demonstrated con-
tinuous pumping of a lasing BEC from a source BEC. Details, which are beyond 
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the scopc of this thesis, can be found in [161, 162], as well as the theses of M. 

Jeppesen [132] and D. Doring [158]. See also the related work on superradiance 

by S. Inouye et al. [163], Demonstration of pumping was a pivotal step along 

the path to a truly continuous atom-laser, however, how to replenish the source 

condensate remains an open but likely solvable problem. 

In the event that a truly continuous atom-laser is developed, there is the ques-

tion of which outcoupler is the best choice. As will be shown in this chapter, the 

continuous operation of an outcoupler shuts down for a strongly coupled system 

due to dressed bound states [164]. This in turns provides a limit to the atom-laser 

flux that can be extracted from a magnetically confined BEC. In what follows, we 

compare the flux-limit of a (multi-level) RF outcoupler, a (multi-level) Zeeman-

Raman outcoupler, and the (two-level) hypcrflne-Raman outcoupler from chapter 

6. Combined with the results of previous work on the divergence of atom-lasers, 

we conclude that our hyperfine-Raman outcoupler is the preferred choice for 

outcoupling the brightest atom-lasers from magnetically trapped BEC; verifying 

predictions by Robins et al. [54] and Dugue et al. [131]. In addition, we include 

preliminary results of an atom laser sourced from an optically trapped BEC: re-

sults which strongly suggest a Heisenberg-limited divergence, and are yet to be 

fully explored. 

7.1 Shutdown of an Atom Laser 

The physics of atom laser shutdown is described well by the formation of dressed 

states and their associated potentials - a well known phenomenon of electro-

magnetically coupled atomic systems (sec equation (2.17) and reference [165]). 

We use a two-level model in one spatial dimension to highlight the key feature 

of atom-laser shutdown; based largely on concepts developed in chapters 2 and 

5. For simplicity, we also ignore mean-field effects. A rigorous treatment of 

BECs in dressed potentials can be found in [166], and such potentials have been 

studied experimentally in the context of forming rf-induced trapping potentials 

[167, 168, 169, 170], 

Consider a two-level atom in a harmonic magnetic field, with bare trapped and 

untrappcd atomic states, Jf) and ]u). These represent any trapped and untrapped 

states that can be coupled, however, we assume they are the J l ,- ! ) and [1,0) 

states of ^^Rb respectively in what follows.^ Their energy levels are thus given by 

equations (5.24) and (5.25) respectively. As the gravitational potential is common 

'All subscripts {t} and {u} are thus equivalent to {1,1} and {1,0} respectively. 
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to both states, it docs not affcct the resonance condition as a function of which 

is equation (5.26) and is restated here for convenience: huJr{z) = l/2mujlz'^ + hLUb. 

Thus, we may neglect the gravitational terms when considering the energy-level 

diagram for coupling these states with radiation of frequency uj, which is given as 

the inset of figure 7.1. Assuming uo is resonant with the centre of the condensate, 

we define a spatially dependent detiming: 

hA{z) = LJr(z) - i^riZs) 

= -mculz^ + hAg (7.1) 

where Ag ^ uJb — uJr{zs) = -mg'^/2hujl. Thus Ag is a measure of the gravitational 

sag for UJ on resonance with the centre of the condensate. 

We consider now the position-space wave functions of the two states, i^t{z, t) = 

{z\f) and ijju{z,t) = {z\u). The equations governing the evolution of these states 

in the frame rotating at UJ are then (from the Schrodinger equation): 

/j2 Q2 
= ( - — — + hA{z) + m.gz ] ^pt + hQipu 

ihipu = 

2 m dz^ 

+ mgz 
2m. dz^ 

The Hamiltonian can therefore be written as: 

ipu + hQipt 

(7.2) 

(7.3) 

A (2 ) n 

Q -A{z) 
+ 

hA{z) 
+ mgz (7.4) 

kinetic 
coupling 

offset 

where / is a 2 x 2 identity matrix and Q is the angular Rabi frequency as defined 

in chapters 2 and 4. For example, in the case of RF coupling, hi} = • Brf|u) 

is the energy of the magnetic dipole coupling, where |Brf| is the amplitude of 

the coupling field and f i ^ is the magnetic dipole moment. In the ease of Raman 

coupling, it is the effective Rabi frequency. In the absence of the kinctic term, 

this Hamiltonian differs from the two-level Hamiltonian in chapter 2 by only a 

point-wise energy offset. Thus, utilising the unitary matrix, equation (2.21), we 

diagonalise the potential and coupling terms to give the equations of motion for 
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the dressed state wave functions: 

ih'il>+ = 
V 

^ ^ + V^iz) + VUz) + 
2m dz^ 

= ( + Vi(^) + vu^)] V - - Vc{z)i^+ 
2m dz^ / 

(7.5) 

(7.6) 

where V±{z) = n/2 {A{z) ± [A(2)2 + Q^jV^) + rngz arc the adiabatic potentials 
for the dressed states |A±); plotted in figure 7.1. In the absence of Vkin and Vc, 
these equations are identical to the results of chapter 2 [equation (2.22)], and 
the dressed states are stationary. Their presence stems from the kinetic term of 
the Hamiltonian and the position-dependent detuning; in particular, Vc induces 
a coupling between the dressed states. Vkin and Vc arc given by: 

VUz) = 
h^A'iz)' 

8ml72 (1 + ^ 
(7.7) 

and 

2rnn (l + + dz 
{71 

By considering the magnitude of these terms, we may define regimes for strong 
and weak outcoupling. 

7.1.1 Strong Outcoupling and the Atom-Laser Bound State 

By inspecting F^n and Vc, it is apparent that as Q increases these terms will 
become vanishingly small. Converting equations (7.7) and (7.8) into dimension-
less form using the harmonic oscillator length, time, and energy scales, it can be 
shown that this occurs when: 

m 
hw. 

(7.9) 

where we have used the value of A'{z) at the trap minimum.^ This is the condition 
for which the dressed states are stationary states of the adiabatic potentials. 

^This assumes that A'{z) varies little across tlie cloud compared with its value at the centre; 
equivalent to aho < Zs- Additionally tlie A " term vanishes for il uj^, which is also satisfied if 
inequality (7.9) holds. In the absence of gravity, this would be the only condition for the strong 
coupling regime. 



§7.1 Shutdown of an Atom Laser 107 

Figure 7.1: Adiabatic potentials (solid lines) formed by coupling \t) and \i) with radiation of 
frequency uj. The inset shows the level coupling tiiagram as a function of the vortical position 
in the trap. The dashed lines represent the potentials when the coupling is switched off. 
showing two crossings. The crossing at 2 ~ -11 nm represents the centre-of-niass position of 
the condensate, with the blue curve representing spatial extent of the BEC in the potentials. 
Note that the height of blue curve is not indicative of the chemical potential. 

Figure 7.1 plots the adiabatic potentials as a function of z. The dashed lines 
represent the bare atomic potentials in the rotating frame, which cross at the 
point of resonance. Clearly V+ admits bound states, and atoms in |A+) remain 
bound in the limit of very strong coupling. 

For a typical sequence used to produce an atom laser, outcoupling is switched 
on non-adiabatically, projecting the atoms onto the dressed basis. For a two-
state system this expansion is given by \t) = (|A-|-) - |A_)) at A{z) = 0 
sec equations (2.17)], and is valid even beyond the extent of the cloud in the 

strong coupling limit. The wavefmiction is therefore distributed evenly between 
a bomid and unbound component leading to ai)proxiniately half the atoms re-
maining trapped in the V+ potential, while the other half leave the trapping 
region in the VI potential. When the outcoupling is switched off, the clouds are 
projected l)ack onto the bare states, producing a second burst of atoms which 
may leave the trap region; however, a significant fraction of the atoms remain 
trapped. Hence a beam is not produced, and the bound dressed state prevents 
production of an atom-laser for strong outcoupling. 
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Figure 7.2(b) dearly demonstrates these features of atom laser shutdown for 
a Raman outcoujjler operating between the Zeernan levels of the F = 1 groiuid 
state of [see figure 7.3(a)]. This figure collates absorption images taken 
for contiimous outeoupling over 14ms as the coupling strength is increased. The 
absorption image of each individual nm of the experiment has been integrated 
in the direction perpendicular to the atom-laser beam, giving the vertical linear 
atom density. Each of these integrated profiles is one pixel-cohunn in the figure, 
and each column corresponds to a different value of coupling strength. The 
coupling strength is characterised by î o, which is the oscillation frequency of the 
untrapped state population for a semiclassical Rabi-flopping model. For a two-
level system, Vo = Q/2Tr. However, for a multi-state outcoupler this is not so. For 
example, VQ = for a three-level outcoupler operating between Zeeman 
states of the F = 1 ground state. 

A continuous atom laser beam can be seen at low frequencies, with the onset 
of complex outeoupling dynamics, and shutdown, as the coupling strength is 
increased. Figure 7.2(a) is a selection of data used to calibrate the Rabi frequency 
using the technique described in section 6.2.4, figure 6.8. 

7.1.2 The Weak Coupling Limit 

The previous section shows that production of an atom-laser beam requires op-
eration outside the strong coupling regime. Although the two-level model is 
suitable in the strong coupling limit, in the case of weak coupling, atoms are 
coupled to a continuum of energy states given by the gravitational potential, and 
the dressed-state model is not particularly useful. 

The weak coupling regime has been successfully modelled by Gerbier et al. 
[171], who applied Fermi's golden rule [94] for coupling a single initial state to 
a continuum of final states; treating the coupling field as perturbative. The 
outeoupling (or transition) rate is then: 

Rt^u='^-^\{u\V,\t)\^p{E,) (7.10) 
^̂ ^̂ ^̂  

where V7 is the perturbative interaction Hamiltonian, and p{E^) is the density of 
final states |?<) at energy E^. \u) in this case represents the contiruious spectrum 
of gravitational potential modes, which are Airy functions [171], Note that the 
transition rate is j^roportional to the Rabi frequency squared. 
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Figure 7.2: Absorption image data for a Raman outcoviplcr operating between Zeeman states 
of tlie F = 1 groimd state of ®''Rb. Red (bine) represents a high (low) atom density, and 
the vertical scales give the vertical extent in space, (a) Raw absorption images displayed for 
a 100/is pulse of outconpling. Images from left to right correspond to increasing coupling 
strength. These images were used to calibrate the Rabi frequency for our setup, as described 
in Scction III. (b) These data represent absorption images taken for 14 ms of outconpling, and 
different coupling strengths. Each cohnnn of pixels corresponds to a single absorption image 
that has been integrated (summed) in the direction perpendicular to propagation of the atom 
laser beam. Hence, each column represents the linear atomic density in the vertical direction 
for a different coupling strength. In the left most columns, a smooth contiimous beam is visible 
for low coupling strengths. As coupling strength is increased, atom laser shutdown can be seen 
in the form of complex density profiles at intermediate coupling strength, and then the clear 
effect of the dressed states at the highest coupling strengths (right most columns). 

A useful iutuitivc picturc of weak outcoupliiig is an irreversible process causcd 
by the gravitational force removing atoms from the resonant region within the 
trapped cloud. Strong coupling, on the other hand, is reversible and well de-
scribed by a two-level model. The boundary between these two limits corresponds 
to the onset of complex outconpling dynamics and atom laser shutdown. The in-
termediate coupling strength has been estimated using a simple model in [54] by 
comparing the timescale associated with the Rabi-flopping frequency Uq to that 
associated with the fall time Tfaii through the coupling region due to gravity. 

As the coupling strength and hence vo is increased, the time required for an 
oscillation of the mitrapped state population becomes comparable to or less than 
the fall time Tfaii, and one can no longer consider the effect of gravity to be 
irreversible. Atoms arc coui)led back into the trapped state and remain localised 
within the coujiling region. It is by this reasoning that vq, and not i} has been 
used as the parameter for comparison of RF and Raman based outcoui)lers. Any 
momentum imparted by a Raman transition will reduce r/„/;, enabling a stronger 
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Figure 7.3: (a) Simplified level diagram of for the different outcoupling schemes, (b) 

Orientation of the Raman beams with respect to our magnetic trap for the two-state hyperfine 

outcoiipler. (c) Orientation of the Raman beams with respect to our magnetic trap for three-

state Zeeman coupling. An rf antenna (not shown) drives transitions between Zeeman states in 

the F = 1 ground state. Optical Raman beams drive a two-photon transition between hyperfine 

(black) or Zeeman (blue) ground states of ®''Rb. 

coupling to be used before reaching the boundary between the strong and weak 

outcoupling regimes; hcnce a Raman outcoupler will result in a larger flux than an 

RF outcoupler, while still remaining in the weak outcoupling regime. In addition, 

Dugue et al. predicted that a two-level system will result in a higher flux than a 

multi-level system for the same value of VQ [131]. 

7.2 The Comparison of Raman and RF Outcouplers 

Our production of BEG is described in section 5.4.2. Specifically, condensates 

of approximately 2 x 10^ atoms of ^^Rb are prepared in the |1, - 1 ) state in the 

QUIC trap, with {ujp.ujy) = 27r x (130,13) Hz. Radio frequency outcoupling is 

performed using an RF loop antenna driven directly by a signal generator at 

~ 1.34 MHz. which couples the three Zeeman states in the F = I manifold. 

We compare this to two Raman outcouplers, one of which operates between the 

Zeeman states of F = 1 and the other between the F = 1 and F = 2 hyper-

fine ground states. The former is described in detail in reference [172]. Briefiy, 

we drive the two-photon transition between |1,-1) and |1,0) using two phase 

locked optical beams separated in frequency by ~ 1.34 MHz, and detuned from 

the 52^3/2 resonance by A,, ~ 300 GHz. The Raman beams are produced by 
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sourcing two beams from a single ECDL, and sending each of these through an 

aeousto-optic modulator (AOM) in a double-pass configuration. Each modulator 

is driven by phase-locked signal generators, separated in frequency by approxi-

mately 0.67 MHz. The beams are directed onto the condensate as shown in figure 

7.3(c). They are co-planar with gravity and the magnetic trap bias field, sepa-

rated by 6 — 140° and given appropriate polarisation to oj^timise the Amp — 1 

transition. This results in a momentum kick of 2hksm9/2 ~ l.Shk parallel to 

gravity. For Zeeman-outcoupling. atoms coupled to nip = 0 can also be coupled 

to rrip' = 1 due to the negligible second-order Zeeman shift for our trap bias field. 

The hyperfine Raman coupler was described in section 6.2, with the beam 

configuration given again in figure 7.3(b) for convenience. All three outcouplcrs 

are oj)erated on resonance, as depicted in figure 7.3(a), and the Rabi frequency 

for each of our systems is calibrated using the method described in section 6.2.4, 

figure 6.8. 

7.2.1 The Zeeman-Raman Outcoupler 

The data used to demonstrate the atom laser shutdown [figure 7.2(b)] were taken 

using the following outcoupling scheme. Raman coupling between Zeeman levels 

is switched on suddenly (< 200 ns) projecting the condensate onto the dressed 

basis. The coupling field remains on for 14 ms and is then suddenly switched off 

projecting back onto the bare atomic basis. The system is left to evolve for 5 ms 

before the trap is switched off, and for a further 2 ms before standard absorption 

imaging along the weak trapping direction [y in figure 7.3(b)]. The relative num-

ber of atoms transferred to the untrapped (atom laser) state is measured and 

plotted as a function of uq in figure 7.4. These data show the dramatic effect 

of atom laser shutdown. For low vq^ a continuous and clean beam is extracted. 

At i/Q = 500 Hz the effect of the bound dressed state manifests, causing an in-

creasing number of atoms to remain trapped. As the coupling strength is further 

increased, the fraction of untrapped atoms saturates at around 0.35, dictated by 

the projection onto and from the dressed basis. 

7.2.2 The Hyperfine-Raman and the R F Outcouplers 

We now present a comparison of the RF and (two-level) hyi)erfinc-Raman out-

couplers. For these data, several changes are made to the outcoui)ling sequence 

given in section 7.2. Firstly, the coupling field remains on for only 3 ms in order 

to allow imaging of all atoms (traj^ped, untrapped. and anti-trapped). For the rf 
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Figure 7.4: Relative number of atoms in the atom laser beam for Zeeman-Raman outcoiipling 
as a function of î o- At I/Q = 500 Hz the number of atoms in the atom laser begins to decrease 
showing a clear effect of the bound dressed state shutting down the operation of the outcoupler. 
Absorption images are shown for each of the specified data points, and correspond to 14 ms of 
outcoupling. Error bars represent statistical uncertainty in the total number of atoms. 

outcouplcr, the system is left to evolve for 800 ns after the coupling is switched 
off. This evolution time was maximised in order to separate the three magnetic 
sub-states as much as possible, while still imaging all atoms onto the CCD cam-
era. For the Raman outcoupler. the system can be evolved for 3.5 ms after the 
coupling is switched off due to the abscnce of an anti-trapped state. The clouds 
are left to expand for 4.5 ms after the t rap is switched off, and a standard absorp-
tion image is taken along the radial trapping direction [x in figure 7.3(c)]. The 
sequence is repeated for different coupling strengths and the relative runnber of 
atoms transferred to the untrapped state is plotted as a function of UQ in figure 
7.5 for RF (black circles) and Raman (blue diamonds) outcoupling. 

Three examples of the absorption images used to extract the atom number 
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Figure 7.5: Relative atom number in the atom laser beam as a function of I^Q. Black circles 
correspond to rf data, and blue diamonds to the Raman data. The dashed lines are fits to the 
data of the form y = /1(1 — and allow a comparison of the bound state onset for 
each data set via the free parameter, r. Absorption images are shown for each of the specified 
points in the rf data. Error bars represent uncertainty in the fitted atom number for each 
image. 

for RF data arc shown in figure 7.5, as well as regions of interest corresponding 
to trapped, untrapped, and anti-trapped atoms. Atom munbers arc extracted 
by integrating a Gaussian fitted to each row of an image and summing over all 
rows for a given region. To a good approximation, the 'trapped,' 'untrapped.' 
and 'anti-trapped' regions correspond to mp = - 1 . 0,and 1 respectively, and 
the cxpcctcd features are visible in all three images. For weak coupling [point 
(a)], a reasonably clcan beam is seen, 3ms in length. This defines the region 
in which untrapi^ed atoms will lie for all images. There are no discernible anti-
trapped atoms. At the other extreme [point (c)], the strong coupling image shows 
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a burst of atoms at the bottom of the 'untrai^ped' region, corresponding to the 

initial projection, as well as a second burst at the top of the -nntrapped" region 

corresponding to the final projection. A cloud of accelerated atoms defines the 

'anti-trapped' region, corresponding to atoms coupled to the anti-trapped state. 

Finally, as was the case in figure 7.2(b), for intermediate coupling strength [point 

(b)], complex dynamics are seen in the form of spatial oscillations in the atomic 

density. It should be noted that as ttif = 0 atoms evolve freely under gravity 

(neglecting second order Zeeman effects), it is likely that upon projecting back to 

the atomic basis for the strongly coupled system, some of thcrn will mix in with 

other states in our defined regions (e.g. in the anti-trapped region). However, our 

fimdamental interest is in the onset of the bound state and atom laser shutdown, 

thus the finer details of the strong coupling regime have not been investigated in 

this work. 

In the graph of figure 7.5, the behaviour theoretically predicted in section 7.1 

is observed. For weak outcoupling {vq < 500Hz), both data sets coincide. More 

importantly, as coupling strength is increased, a plateau is seen in the munber 

of atoms transferred to the nntrapped state for both rf and Raman outcoupling. 

This plateau occurs at a lower value of î o for rf outcoupling. and also saturates 

at a smaller fraction of atoms outcouplcd. The dashed lines arc fits to the data 

of the form y = ^ (1 — and the parameter r is used to compare the 

maximum uq for the two systems. We find Uq is larger by a factor of 1.45 for 

Raman outcoupling, translating to an increase in flux of approximately 2.1. By 

utilising a full 2hk momentum kick, this could be improved to an overall increase 

in flux by a factor of 5 for (two-state) Raman outcoupling over rf outcoupling. 

It is worth noting that when considering the two-state Raman outcoupler, the 

model in section 7.1 predicts a maxinnun Uq of ~ 1 kHz, which is in reasonable 

agreement with the experimental data. 

A final important result is that the three-level Raman outcoupler data in figure 

7.4 plateaus at a higher relative number than the RF outcoupler, but at a lower 

relative number than the two-state Raman coupler. This provides experimental 

evidence that a two-level outcoupler will achicve a higher maximum flux than 

a three-level outcouplcr, as predicted in [131]. Thus, by combining figure 7.4 

and 7.5, we find that a two-state Raman outcoupler can produce the highest 

continuous atom laser flux of any outcouplcr for magnetically confined samples. 
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7.3 Conclusions for RF vs. Raman Outcouplers 

When iriomcntuni is imparted to atoms outcoupleci from a BEC to form an atom 
laser beam, a higher continuous flux is achievable compared with zero momen-
tum transfer systems. We have experimentally verified that a two-state Raman 
outcoupler can achieve higher continuous flux than any RF-based or nudti-level 
system. Coupled with the previous work on divergence and the spatial mode 
of Raman outcoupled beams [f26], it is now clear that a two-level Raman out-
coupler produces the highest-brightness atom laser beam of any outcoupler to 
date for magnetically confined samples. With rapidly developing technology for 
producing larger condensates with shorter machine duty cycles, the recent work 
on pumping [161, 162] and development of an atom laser Ramsey interferometer 
[151], as well as the i)otential of utilizing squeezing, the atom laser is becoming 
a strong contender as a beam source for applications in atom interferometry. 

7.4 Outcoupling an Atom-Laser from an Optical Trap 

In close collaboration with P. Altin, we have recently produced atom-lasers from 
optically confincd condensates in our dual-species machine (section 5.4.3). 
Our preliminary results are evidence of a beam with a transverse momentum 
width limited by Heisenberg uncertainty. This results from the details of all-
optical outcoupling, which we motivate with a simple model below. Cennini 
et al. first demonstrated outcoupling from an optical t rap in [53], however, no 
evidence was presented that suggested a Heisenberg-limited beam. 

The principle of outcoupling from an optical t rap is outlined in figure 7.6. As 
evaporation in an optical trap is induced by decreasing the trap depth, allowing 
the most energetic atoms to 'spill' out, the final trap depth is comi)arable to 
the chemical potential of the BEC. In other words, the BEC fills the entire 
trapping volume. An atom-laser can therefore be extracted by slowly reducing 
the t rap depth further, allowing atoms to leave the condensate due to gravity. 
This is illustrated in figure 7.6(a). The blue curve represents the total potential 
due to gravity, a Gaussian oi)tical potential, and the mean-field energy, which 
mirrors the t rap profile. The dashed line is the potential without the mean-field 
for reference. Note that atoms with the cloud see a fiat potential. We use this 
feature to motivate a Heisenberg-limited divergence. 

The total potential is drawn in two dimensions in (b). As the trap depth is 
lowered, gravity extracts atoms, which have classical trajectories represented by 
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Outcoiipling 

Figure 7.6: Sclicmatic representation of atom-laser outcoupling from an optical trap, (a) The 
total traping potential in the vertical direction, which is the sum of the gravitational potential, 
a Gaussian optical potential, and the mean-field energy. As the trap depth is lowered, atoms 
are extracted from the trap by the gravitational force. Note that atoms with the cloud see 
a flat potential, (b) The same potential drawn in two-dimensions, with classical trajectories 
given by the yellow arrows. As atoms are still influenced by the optical potential, and thus are 
not repelled transversely by the mean-field, (c) Surface potential of an magnetically outcoupled 
atom-laser for comparison. In this case, the atoms are insensitive to the trapping potential, 
and diverge due to mean-field as discussed in section 5.3.1. 

the yellow arrows. Notice that as atoms leave the trap, they are still infiucnced 
by the (attractive) optical potential, which perfectly balances the mean-field re-
pulsion, and arc thus not repelled by the mean-field. This should be compared 
with the case of outcoupling from a magnetic trap, in which outcoupled atoms 
are no longer sensitive to the magnetic field, and only evolve under the gravita-
tional and mean-field potential. The potential surface is shown in (c), along with 
classical trajectories, and was used to estimate the atom-laser momentum width 
in 5.3.1. 

Figure 7.7 gives a tantalising set of data for a typical optical atom-laser pro-
duced in our system, (a) is an absorption image, taken after ~ 20 ms of expansion 
after switching off the dipole trap, and the beam length corresponds to ~ 11 ms 
propogation from the bottom of the BEC to the bottom of the image. We mea-
sure the divergence of the beam by fitting transverse line profiles to the integrated 
Thomas-Fermi distribution = po(l - B is the beam radius 
and po the peak column density. Two examples of these fits are given at position 
I and II. The fitted radius is plotted as a function of the vertical position 2 in 
(c). Although in principle R oc a linear fit is sufficient for our data, particu-
larly after 20 ms of expansion. From the linear fit, we extract a divergence angle 
0 = (0.05 ±0 .12) mrad. 

Although our measured divergence is not discernible with the current measure-
ment uncertainty, the expected Heisenberg limit for our experimental parameters 
(ujy — 2n X 28 Hz, N ~ 10® atoms) is on the order of O.lmrad; consistent with 
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Figure 7.7: (a) Absorption image of a typical atom-laser outcouplcd from an optical trap by 

lowering the trap ciepth. (b) Beam radius as a function of the vertical position in the beam. 

The Radius is given by fitting a Thomas-Fermi profiles fit to horizontal sliccs of the beam, witli 

two examples given in I and II. Figure courtesy of P. Altin. 

the incastircincnt uncertainty. This is strongly suggestive of a Heisenberg-hmited 

atom-laser beam divergence. These preliminary results are being investigated 

further, and will be improved by increasing our absorption imaging resolution, in 

addition to theoretical modelling of the outcoupling i)rocess. 

In any ease, freely propagating atom-laser beams such as that of figure 7.7 

are rarely, if ever, found in the literature; such a clean, narrow momentum-width 

source holds great promise as an atomic source for future inertial sensors. 
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Chapter 8 

Large Momentum Transfer 

Beamsplitters 

In chapter 3, wc derived the phase shift of an atomic interference based inertial 

nicasurcnient. In general, it was found that the phase-shift is hnearly dependent 

on the effective space-time area (oc keT^) enclosed by the two interferometer 

paths. For example, recalling equation (3.18) for uniform gravitational accelera-

tion in a Mach-Zchnder configuration, we have; 

= (8 .1) 

with a projection-noise limited sensitivity of: 

Affll = (8.2) 

where g\\ is the component of acceleration parallel to k,. There are therefore three 

parameters available for increasing the sensitivity: the interrogation time T, the 

effective wave vector k,,, (which as will be motivated below, is proportional to the 

momentum transferred in the beam splitting process), and the number of atoms 

N (or flux for a given measurement time).^ Flux is currently limited by atomic 

source technology to around 10" atoms/s for thermal beams [14], 10''' atoms/s 

for laser cooled sources [10], and 10'' atoms/s for Bose-condenscd sources [77].̂  

Furthermore, the dependence on N is weakest of all available parameters. 

Although the sensitivity scales most strongly with interrogation time, iiicreas-

' I t is important to note, that althougli equation (8.2) is derived from the projection-noise limit, a 

signal will always increase with ^/N for N independent measurements. This follows from the central-

limit theorem. As N atoms in the majority of interferometers can be treated as N independent 

measurements of phase, then the sensitivity will improve with / /V for a random-noise limited system. 

^These numbers for total flux are not the number of atoms participating in the interferometer, 

which is usually a larger fraction of the total for a narrower momentum width source. 
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irig it bccoines a practical consideration regarding apparatus size and application. 
For example, T = I s corresponds to at least a 5m drop (or a 2.5m launch) in a 
free-fall gravimeter. Similar apparatus sizes result when considering a gyroscope, 
for both thermal beam and ultra-cold sources. To date, the highest reported value 
for the interrogation time is for a gravimeter with T = 0.4s and an apparatus 
height ~ I m [10]. Such long times may be considered unsuitable, particularly 
for portable devices. 

LMT beamsplitting therefore currently offers the most promising avenue for 
increasing the sensitivity. This is particularly so due to the modest useful momen-
tum transfer demonstrated to date [85], and as current state-of-the-art devices 
for both rotation and acceleration operate using the minimum transfer of just 
two i)hoton recoils (2hk). Dimopoulos et al. have, for examj^le, suggested a 
gravitational wave detector which requires 1000 photon recoils [28]. In general, 
optical lattices have been used to produce LMT atom-optical elements. These 
either utilise Bragg diffraction [85], or Bloch oscillations [173], both of which can 
be described by the exchange of 2n-photons between the counter-propagating 
beams forming the latticc, leading to an increase in the phase shift by a factor of 
n. 

We focus on the use of Bragg diffraction, and this chapter describes the theory 
of Bragg diffraction and its use for LMT beamsplitting. We outline the details of 
our LMT beamsplitter laser-system, including recent improvements to the noise 
characteristics, which is used for gravimetry with a BEC in chapter 9. 

8.1 Bragg Diffraction 

8.1.1 Bragg Scattering 

In 1912, Sir William Lawrence Bragg discovered the law of X-ray diffraction from 
crystals; now known as "Bragg's Law" [174]. This won his father, Sir William 
Henry Bragg, and him the Nobel Prize in Physics in 1915, and enabled the study 
of crystal structure by analysing the X-ray diffraction patterns. In contrast to 
normal diffraction from a thin gratting, Bragg diffraction occurs when a wave 
of wavelength A, incident at an angle 9 scatters weakly from nniltiple periodic 
planes such as those in a crystal latticc. Only at particular scattering angles 26 
do these scattered waves add in phase, favouring a strongly enhanced diffraction 
order, n. This process is illustrated in figure 8.1 using scattering from just two 
adjacent crystal planes. The red section of one scattered wave represents the 
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Figure 8.1: Schcmatic representation of Bragg diffraction in crystals [176]. 

optical path difference (OPD), equal to 2dsmff. where d is the spacing between 
planes as shown. When the OPD is equal to a whole number of wavelengths 
nA as shown, the waves constructively interfere and this condition is known as 
Bragg's Law: 

r?A = 2dsin6l„ (8.3) 

It is important to note that this simple derivation assumes the wave arc refleted 
from individual planes, implicitly assuming that many scattering centres and 
crystal planes are sampled in a highly symmetric system - essentially a "thick" 
reflection grating and the signature of strict Bragg diffraction. This point will be 
important when we consider diffraction of atoms the quasi-Bragg regime [175] in 
chaptcr 10. 

8 .1 .2 B r a g g Di f fract ion of A t o m s 

Given the wave nature of matter , Kapitza and Dirac theorised in 1933 tha t an 
electron beam could be diffracted by an optical standing wave [177], It was 
not until the availability of the optical laser that this was observed in 1965 by 
Bartell et al. [178]. We can equivalcntly consider Bragg diffraction of atoms by 
a periodic potential generated with an off-resonant optical standing wave. In 
the case of atoms, the process is resonantly enhanced due to their internal level 
s t ructure [179]. The description is essentially identical, with the role of light and 
mat ter reversed, and A replaced by the de Broglie wavelength Aas- This was first 
demonstrated with sodium and published in 1988 [80]. In this case, the analogy 
is explicit; a collimated beam of sodium atoms was scattered from an optical 
standing wave at a variable angle of incidence, leading to the observation of 
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Figure 8.2: Schematic representation of Bragg diffraction of atoms from a one-dimensional 

optical lattice. Red ellipses represent antinodes of the standing wave, and wave packets rep-

resent an atom. The grey transmitted wave packet represents an atom that is only partially 

diffracted, for example, in the case of a beam splitter. 

diffraction orders. Bragg diffraction, often thought of as the 'thick-grating' regime 

in reference to the optical analogy, should be distinguished from the Raman-Nath 

or "thin-grating" regime [114], Raman-Nath diffraction is analogous to normal 

diffraction in optics resulting in multiple diffraction orders. Normal diffraction of 

atoms has been used for atom interferometry [f 11], however it leads to inefficient 

population of high-momentum states and is therefore not well suited for LMT 

beamsplitting. 

In figure 8.2, we illustrate diffraction in the lab frame for atoms incident 

at an angle of 9, and momentum p,. Notice the similarity with figure 8.1. The 

optical standing wave, represented by the red ellipses, is composed of two counter-

propagating laser beams of wavevector k. ks 0 ^ 0, there is a component of 

velocity along k. The Bragg condition on the incidence angle can then be restated 

as a condition on this component of the atomic velocity: 

nAdB == 2(isin(0„) 

n— = 2dv̂  sin(0„) 

2dm 
= Vr, 

(8.4) 

(8.5) 

(8.6) 
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r̂ n = n ^ (8.7) 
m 

where I'n is the resonant atomic velocity along the lattice for n t h order diffraction, 
and we have used the de Broglie relation A^b = h/mv,. The spacing between 
nodes of the optical lattice d = A/2 = n/k. It is important to note tha t Bragg 
diffraction 'reflects' this component of velocity, and the change in momentnm 
along the lattice is therefore 2m.Vn = 2nhk. We see here the first suggestion of a 
quantised description of Bragg diffraction, namely tha t 2n photon momenta are 
imparted to the a tom. 

We may gain fur ther insight by considering figure 8.2 in the f rame of the 
atom. In this f rame Aae ^ oo. However, the optical lattice now travels at a 
velocity — f o r nth-order diffraction. This is equivalent to a detuning of the 
counter-propagating beams due to the Doppler shift, given by: 

= 2kVn - ^ ^ ^ = ^nuOr (8 .8) 

Furthermore, the a toms experience the optical lattice as a pulse in time. 
Hence, Bragg diffraction can be described as a 2n-photon Raman transition be-
tween momentum states separated by 2nhk. It is therefore possible to diffract 
s ta t ionary atoms by producing a traveling lattice in the lab frame, with equation 
(8.8) defining the resonance condition for the frequency-difference of the counter-
propagat ing beams. This was first demonstrated with a BEC by Koziuna et al. 

in 1999. The process is illustrated in figure 8.3, which shows the dispersion curve 
for the ground s ta te of the atom. The excited s ta te is omitted for simplicity, and 
it is assiuncd tha t the single-photon detuning is such tha t spontaneous emission 
is negligible. Photons at uJi arc absorbed from one lattice beam, and photons at 
i02 are st imulated to emit into the counter-propagating beam. Each absorption-
emission event transfers two photon momenta and adds the relative i)hase of the 
lasers onto the atomic phase. Therefore, after n such events, the s ta te \p = 0) 
is coupled to = 2nhk).^ Thus the interferometer phase shift for luiiform 

acceleration becomes: 

$ = n ( 0 i - 2 ( / ) 2 + <̂ 3) = 2 n k - g r ' (8.9) 

showing the enhanced sensitivity when using an LMT beamspli t ter . This is 

equivalent to increasing the effective wave vector of a Raman transit ion by a 

^It is assumed that k\,2 = u;i.2/c k. For example, ki and k2 differ by 10 k\ for n = 10. 
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Figure 8.3: Bragg diffraction as a multi-photon transition between momentum states |p>, 
in the frame of an atom. The excited atomic state is omitted for simplicity. For nth order 
diffraction, n photons at wi are absorbed and stimulated to emit at u;2- leading to a transfer 
of 2nhk momentum, and an energy of nhAuJn 

factor of n. 

8.2 The Bragg Laser-System 

In designing a Bragg-bascd LMT laser system, identical features arc required as 
those discussed for the Raman laser-system in section 6.1. Repeating the list 
here, we require: 

1. Two lasers fields, with a tuneable frequency difference to address a partic-
ular Bragg resonance or drive Bloch oscillations. 

2. An ultra-stable relative phase between the two lasers. 

3. Intensity control and timing for pulse shaping. 

4. Clean and simple spatial modes (e.g. Gaussian), ideally identical for cach 
laser beam. 

Whereas for the Raman coupler we required phase-locked lasers with a frequency 
difference of ~ 6.34 GHz, the frequency difference for driving Bragg transitions is 
only on the order of hundreds of kHz, as Aujr — 15kHz [see equation (8.8)]. This 
means that the same AOMs used to satisfy point 3. can be used to control the 
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Figure 8 .4: Siniplified representation of the LMT laser system. TA: tapered amplifier, 01: 
optical isolator, M: mirror. BS: beamsplitter. FC: fibre coupler, PD: photo detector. 

frequency difference by driving them at slightly different RF frequencies. Point 
2. is again satisfied by using a single ECDL. 

8.2.1 Optical Setup 

A simplified diagram of our LMT laser system is given in figure 8.4. Light is 
sourced from a single ECDL which is detuned by ~ 90 GHz from one-photon res-
onance to greatly suppress spontaneous emission. This is then amplified by a high 
power tapered amplifier [142] giving 1.3 W of power. The light is evenly split us-
ing a polarising beamsplitter (PBS) and directed through two 80 MHz AOMs cach 
driven at slightly different frequencies by a single direct digital synthesiser (DOS) 
(PulscBlasterDDS-II-300 [180]), which allows for the arbitrary pulse shapes and 
coherent relative-frequency sweeps required for our experiments. The DDS is 
controlled via a custom optimisation software written by R. P. Anderson. The 
first-order of cach AOM is then recombincd on a second PBS, before being cou-
pled into a single-mode polarisation-maintaining optical fibre, to be sent to the 
experiment. 

Figure 8.5 shows the optical configuration of the LMT laser for producing 
the countcr-i)ropagating beams required to drive Bragg transitions. The co-
propagating frequencies from the fibre have a total power of 150 mW and are 
collimated to 3nnn 1/e^ diameter. They arc directed into the science cell of our 
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Figure 8.5: Optical setup of tlic LMT beamsplitter at tlie scicncc cell of our dual-specics BEC 
machine. The incoming beam contains both (phase-locked) laser frequencies co-propagating 
and orthogonally polarised, travels vertically through the cell and is retro-reflected to produce 
counter-propagating frequencies. The quarter-wave plate (A/4) is necessary to produce the 
optical standing-wave that diffracts the atoms. The magnetic-trap coils are shown for reference; 
to be compared with figure 5.9. 

dual-spccies BEC machine from below, ideally parallel to gravity. As ki and 
k2 arc orthogonally polarised, the light propagates through a quarter-wave plate 
after emerging from the cell, before being retro-reflected by a mirror. This results 
in a 90° rotation of the polarisation for the downward propagating beams, which 
results in two (generally travelling) optical lattices with opposite kp. As the atoms 
are in free fall during the interferometer sequence, only one of these lattices is 
kept on resonance when compensating the Doppler shift by sweeping the laser 
frequency difference. Alternatively, one of the frequencies can be rejected using 
a PBS just before the retro-reflector, and a second quarter-wave plate below the 
glass cell. 

8.2.2 P h a s e - N o i s e Analys i s 

Although the two beams arc sourced from a single ECDL, which ensures a com-
mon phase, the counter-propagating frequencies reaching the atoms have trav-
elled slightly different paths via the two AOMs and then the retro-reflector for 
k2. Thus the relative phase of the two beams will be compromised by mirror 
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Figure 8.6: Power spectral density of the Bragg laser-system optical-beat signal for our original 
setup used in reference [63] (red), and our recently improved setup, housed in an acoustically 
isolated laboratory (black). The inset zooms into a 10 Hz span of the black trace, shown as the 
grey-dashed rectangular region. 

vibrations, air ciirrciits, as well as slow drifts in the birefringent optical fibre. To 
ensure a locked phase after the fibre, we have the option of phase-locking the two 
frequencies using an OPLL operating in the hundreds of kHz band, relatively 
simple compared with an OPLL operating at GHz frequencies. In principle, the 
photodetector signal could also be used to stabilise the intensity of the light, 
ensuring the stability of the effective Rabi frequency, although this has not been 
necessary for our work so far. 

Our initial setup, used for the work in reference [63] and part of chai)ter 9, 
was built on a sorbothane isolated optical bench to help reduce vibrations. The 
normalised power spectral density (PSD) of the beat signal, centred at 15 kHz, 
is the red trace in figtire 8.6. The -3dB width of the peak is ~ 0.2 Hz, with clear 
noise sidebands shown over a 500 Hz span. 

This first incarnation of our Bragg laser-system was located in a s tandard 
physics laboratory full of typically (acoustically) noisy equipment such as power 
supplies. In particular, we found that acoustic noise readily coupled into our 
system, and to this efl'ect, have recently moved the experiment and Bragg system 
into a purpose-designed low noise environment. The laboratory has been refur-
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Figure 8.7: Photographs of our new acoustically isolated laboratory, showing the two air-

floated optical tables (left image), and the secondary isolation enclosure around one of the 

tables (right image). 

bishcd with acoustic isolation on all walls and the coiling. This room houses a 

second acoustically isolated enclosure, within which we place our air-floated opti-

cal table (see figure 8.7). All power supplies, and nearly all electronic equipment 

is located outside the laboratory in our control room. 

The Bragg laser-system is now housed directly on the air-floated table, and 

the black trace of figure 8.6 shows an equivalent beat signal measurement for 

the system in the new environment. In this case, the -3dB width is < lOmHz, 

limited by the Fourier resolution (sec inset) and more than an order of magnitude 

narrower than in the noisier lab environment. There is also a clear passive reduc-

tion in noise by as much as 4 orders of magnitude, with essentially no discernible 

noise features beyond 5 Hz over the full 100 kHz bandwidth of the measurement 

(not shown). The phase noise is -107dBc/Hz at 85kHz from the carrier for the 

unstabilised setup. For comparison, a state-of-the-art active phase-lock between 

two titanium sapphire lasers achieves -138dBc/Hz at 1 MHz from the carrier 

[155], 

To investigate the relative-phase stability further, we have simultaneously 

measured the beat signal from the photo-detector and the reference signals from 

the DDS on a deep-memory digital sampling oscilloscope (DSO) (LeCroy Wa-

vcRinmer 44Xi-A [181]). The electronic setup for this measurement is given in 

figure 8.8. The two DDS chaimels are driven at 80.0 MHz and 79.9 MHz re-

spectively, and their outputs split evenly with a power-splitter (Mini-Circuits 

ZSC-2-1). One frequency pair is sent to the AO Ms of the Bragg laser-system, 

and the pair other mixed down (Mini-Circuits ZAD-6) producing sum and dif-
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Figure 8.8: Electronic setup for measuring the relative-phase fluctuations of the Bragg laser-
system. LP: 15 MHz low-pass filter, mixer. PD: photodeteetor. 

fcrcncc frcquciicics at the mixer output. A 15 MHz low-pass filter (Mini-Circuits 
BLP-15) removes the sinn frequency, giving a reference at 100 kHz. The photo-
detector in the Bragg-system measures the beat signal at 100 kHz, including any 
phase drift between the reference's phase, and the beat's phase caused by e.g. 
mirror vibrations or air temperature and pressure variation in the optical path 
of the laser beams. 

Using the DSO, we acquire time traces of both signals for up to 5 second with 
a sampling rate of at least 2.5 MHz. We then post-process the data by fitting 
sinusoids to each period of the traces, determining the beat and reference phase 
as a function of time. A more standard method, which yields a higher bandwidth 
in principle, is to mix down the reference and beat signal, which after a low-pass 
filter, is proportional to the sine of the phase difference. However, extracting 
the relative-phase from from this signal involves a small angle approximation, 
which is equivalent to assuming the reference and beat signals are approximately 
7r/2 out of phase with relatively small fluctuations. This is not the case for our 
unlocked setup, and is better suited to the case of a closed OPLL [155]. 

Figure 8.9 presents the results of the relative-phase measurement for an un-
locked system. In (a), we plot the relative phase between the reference and beat 
signals for a 2 second trace (red line). We observe a slow drift in the phase as a 
function of time, over a range < 1 rad. This is likely the result of changes in the 
refractive index of the air between two unconnnon paths of the laser setup [see 
figure 8.4]. For example, a differential refractive index change of 1 part in 10^ 
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corresponds to a rclativc-phasc sliift of Irad/m. In our setup, the lasers propa-

gate around 20 cm from the first I^BS to the second PBS. In reference [182], a 

variation of the refractive index of lO^^/K is measured at standard temperature 

and pressure. Thus, relatively modest in variations the ambient environment can 

explain the relatively large i)hase drift in figure 8.9. 

Frequency (Hz) 

Figure 8.9: Relative-phase noise analysis for the Bragg laser-system, (a) Is the relative phase 

plotted as a function of time (red), including a polynomial fit to the trace (black). The same 

data is plotted in (b) with the polynomial fit from (a) subtracted. The phase PSD is calculated 

and shown in (c) for (a) and (b) respectively. 

We estimate the result that would be obtained by locking out these slow drifts 

with a modest bandwidth OPLL by fitting and subtracting a polynomial from 

the data in (a). The fit is shown in black, with the subtracted result presented 

in (b). The phasc-PSD of the data in (a) and (b) is colour-coded and shown in 

(c). The measured spectrum is unremarkable, with mild features aroimd 2-3 Hz; 

representative of the slow drift in (a). The estimated PSD for locking out the slow-

drifts indicates a sui)pression of noise below 1 kHz; more so at lower frequencies. 

The residual phase-noise, integrated across the entire spectrum is 3.4 x rad^ 
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for the nicasiirod da ta , and an est imated 6.2 x lO '^rad^ for a modest bandwidth 
OPLL. We exi)ect a higher bandwidth OPLL would improve even furtlier on this 
est imate, and arc currently in the process of incorporating an OPLL, which will 
feed back to the R F drive of one of the AOMs. For comparison, the state-of-the-
art system in [155] achieves ~ lO^^rad^ integrated over 1 Hz - 100 kHz. using a 
9 MHz bandwidth OPLL. 

It should finally be noted that implementation of an OPLL will only lock 
the relative phase at the photodetector . Once the two frequencies propagate 
to the atoms, ki fur ther propagates to the retro-reflector and back (see figure 
8.5), introducing another unconnnon pa th length. Vibrations of this mirror, 
as well as drif ts in the refractive index will therefore re-introduce relative-phase 
noise. It is for this reason tha t the retro-reflector in atomic gravimeters is usually 
well vibrationally isolated, which is often done actively [8]. In some cases, the 
retro-reflector is fixed to a seismometer, which produces a signal tha t is used to 
post-correct the interferometer da ta [9]. In any case, the phase analysis of figure 
8.9 is suggestive of what we expect for our retro-reflector in the absence of any 
active stabilisation on our current optics table. 

8.3 Bragg Beamsplitters and Mirrors 

In figure 8.10, we give several examples of Bragg diffraction using our laser sys-
tem. All images are absorj^tion images of Bose-condensed samples, after applying 
Gaussian Bragg pulses with pulse durat ions on the order of 100//s. Pulses are 
applied 12 ms after the cloud has been released from the trap. The left image is a 
TT-pidse, and therefore a mirror, for first-order diffraction. 93% of the atoms are 
diffracted from the initial s tate. The cloud has a momentum width < O.lhk. At 
this momentum width, the diffraction efficiency is close at the fundamental limit, 
as we will discuss in chapter 10. The central image shows an LMT l)eamsplitter 
for fourth-order diffraction. The splitt ing ratio is is close to 50/50. Notice the low 
population of intermediate mouientinn states, which occurs due to off-resonant 
transit ions related to Raman-Nath-l ike diffraction (see section 10.1.2.) 

\Ve are currently limited by laser power and one-photon detiming considera-
tions to fifth-order mirrors of around 60% efficiency, with no discernible popula-
tion of the intermediate momentum states. When insufficient power is available 
to target yet higher orders, one option to increase the momentum transfer is 
to use cascaded Bragg pulses, which consecutively diffract the a toms in stages 
183]. For example, Ohk 2hk Ahk, etc. Selective diffraction is possible 
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Figure 8.10: Examples of Bragg diffraction with our Bragg laser-system. Left: a 2hk Bragg 

mirror of BEC with an efficiency of 93%. Centre: an 8hk Bragg beamsplitter of a BEC. Right: 

five consecutive 2hk Bragg mirrors of 90% efficiency each, giving a total efficiency of 70% for 

the effective lO/lfc mirror. The BEC has a momentum width of < O.lhk in all images, and red 

represents a higher atom density. 

as each pulse targets a Bragg resonance with a different initial momentum (in 

the laboratory frame). The image on the right of figure 8.10 gives an example 

of such a mirror, showing five consecutive first-order Bragg pulses. Each step is 

~ 90% efficient, giving an overall efficiency of 70% for a lOhk mirror. Because 

of our power limitation, this is more efficient than what is possible for a single 

fifth-order diffraction pulse. The draw back is that the effective pulse-time for the 

Bragg mirror is increased. Furthermore, if higher laser power was available, then 

the ftmdamental diffraction limit is only set by the atomic cloud's momentum 

width (see chapter 10 and [78]), and multiple-pulse schemes will always result in 

a lower efficiency. 

In very recent work, we have developed a frequency doubled, narrow linewidth, 

780 nm fibre-laser system with over 11 W of power available for the Bragg beam-

sphtter [184]. Assumhig a l/e^ radius of 7.5mm, this gives a peak intensity of 

~ lOW/cm^. A one-photon detuning of 20 GHz would then result in a sponta-

neous emission-induced atom loss of 1% for a 20 ̂ s pulse, giving a two-photon 

Rabi frequency of ~ eOOa;̂ - Based on our theoretical work (again, sec chapter 

10 and [78]), we expect to be able to achieve at least an n = 21 (i.e. 42hk LMT) 

Bragg mirror for a BEC, with an efliciency of ~ 90% for a single Bragg pulse. 
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8.4 Summary and the Advantages of Bragg Diffraction 

Wc have developed a LMT beamsplitter for atom interferometers, based on the 

Bragg diffraction of atoms using a relatively simple laser system. Our system has 

achieved beamsplitter and mirror pulses transferring up to 10 photon momenta, 

with a mirror efficiency of up to 93%. By relocating the system to an acoustically 

isolated environment, we are able to passively improve the noise characteristics 

of the system by as much as 4 orders of magnitude in particular frequency l:>ands. 

With a relatively modest bandwidth OPLL, we expect to be able to reach state-of-

the-art relative-phase stability, on the path to a high precision atomic gravirneter. 

Finally, it is worth highlighting several advantages of Bragg-bascd beamsplit-

ting compared with (hyperfine) Raman transitions. In general, because Bragg 

transitions involve the coupling of external degrees of freedom, atoms remain in a 

single internal state, largely negating several state-dependent systematic cffects. 

Firstly, the differential AC Stark shift [see equation (4.17)] introduces an 

intensity-dependent shift on the Raman transition frequency, due to the (gener-

ally) different matrix elements between the two ground states and the excited 

states. Any intensity fluctuations will therefore introduce spurious phase shifts 

into the interferometer. Similarly, the second order Zeeman shift cffects each hy-

perfine ground state differently (see the Breit-Rabi formula [128]), leading again 

to a systematic shift on the resonance. In the case of magnetic field gradients, 

there will be a path dependent shift on the resonance, which could in general also 

be time dependent. 

In both the above examples, these systematic effect arc avoided when using 

Bragg diffraction, as atoms remain in the same hyperfine state, and any state-

dependent shift is common to both arms of the interferometer. 

Furthermore, it is often assumed that after phase-locking the two lasers re-

quired for an atomic beamsplitter, any fluctuations along the co-{)ropagating path 

arc common to both frequencies and therefore canccls in the relative-phase. This 

is only strictly true if ki — k2, as the relative phase fluctuation will l)c (A:i -A;2)Ax, 

where Ax is a small displacement, say due to a mirror vibration. For the case of 

Bragg diffraction. {ki - k2) is on the order of 0.02 rad/m for '^^Rl) and a frequency 

difference of 1 MHz. A Raman transition on the other hand, is around 150 rad/m. 

Thus common mode rejection for a Bragg-l)ased beamsplitter will be almost 4 

orders of magnitude better than for a Raman transition; essentially negligible for 

typical Ax ~ a few microns. 
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Chapter 9 

Gravimetry with a Bose-Einstein 
Condensate 

Work in this chapter- has been peer-reviewed and published in: 

J. E. Debs, P. A. Altin, T. H. Barter, D. Doring, G. R. Dennis, G. McDonald, 
R. P Anderson, J. D. Close, and N. P. Robins. Cold-atom gravimetry with a 
Bose-Einstein condensate. Phys. Rev. A 84, 033610 (2011). [63] 

This chapter presents results on the first Mach-Zehndcr atomic graviuietcr 
based on the interference of a BEC. With one of the most promising avenues 
for increasing sensitivity being LMT beamsphtting [79, 85, 185, 186], we use 
Bragg-based LMT to increase our sensitivity to gravity, while maintaining a good 
fringe visibility. Although not described in chaptcr 8, our Bragg laser-system can 
also drive Bloch oscillations as an LMT technique [33, 79. 173, 186, 187], We 
briefly describe Bloch oscillations and present results with a high fringe visibility. 
Furthermore, the use of BEC has been largely neglected by the precision mea-
surement community due to a major concern that the comparatively high atom 
density will lead to intcraction-induced phase diffusion, and a limitation on pre-
cision [61, 187]. We use a simple model to demonstrate that phase diffusion in an 
expanded BEC will not limit the precision of inertial measurements, consistent 
with observations at our current best i)recision of 10"®. 

9.1 Experimental Background and Methods 

The basic ojjerating princii)lcs of an atomic gravimeter were discussed in chaj)-
ter 3 and have also been descrilied in detail elsewhere [7, 8]. Briefly, we use 
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ntli-ordcr Bragg transitions [81, 83, 85] as our atom-optic beamsplitters (7r/2 

pulses) and mirrors (tt pulses) in the Maeh-Zehnder (7r/2 - n - 7r/2) configura-

tion. These couple vertical momentum states separated by 2nhk\ where k = |k| 

is the waveinunbcr of the Bragg laser and n an integer. For uniform acceleration 

the atomic phase evolution of each arm is identical, and the only interferomet-

ric phase contribution is from the atom-light interaction [8]. Restating equation 

(8.9) for acceleration due to gravity, the interferometer phase is: 

$ = -2(^2 + 0 3 ) - 2 n k - g r 2 (9.1) 

where 4>i is the optical phase of the zth Bragg pulse, and T is the t ime between 

pulses. Scanning $ results in fringes P = | ( ^ + C c o 8 $ ) in the relative populat ion 

in state |po + 2nhk), where C is the contrast^ and A the fringe offset. 

Our production of B E C was described in section 5.4.3. As a reminder, we 

produce pure ^'^Rb |1,-1) condensates with up to 2 x 10® atoms hi a crossed 

optical-dipolc trap with = 27r x (50, 57,28) Hz. This gives a momentum 

width of ~ 0.14M- after 12 ms of balhstic expansion from the trap [see figure 

9.3(c)]. We can transfer the atoms to the first-order magnetically insensitive 

state using a Landau-Zener R F sweep after the B E C is formed; however, we 

presently find this step unnecessary as we observe no effect on fringe visibility, 

SNR or our measurement of g at our current max imum sensitivity. 

Our Bragg laser system was described in section 8.2. To operate in the Bragg 

regime and address the entire cloud, we use Gaussian-shaped pulse envelopes 

78, 175] and choose our pulse length r to satisfy ^ • k < r "^ < lu^, ensuring 

minimal loss to adjacent monientmn states for a given n. For n = 1, we are able 

to maximise our yr-pulsc efficiency to 95% in this way. However, we find that 

a 300/xs velocity selection pulse is required in order to achieve 93% efficiency 

for n = 3. This narrowing of the transition momentum selectivity for finite is 

discussed in chapter 10. Due to the size of our science cell, we are limited to an 

interrogation time of T = 5 ms. After several milliseconds of further separation 

following the final n/2 beamsplitter, an absorption image is taken to measure the 

momentum distribution of the atoms. 

As described in chapter 3, the freely-falling atoms experience a t ime dependent 

Doppler shift S^it) = 27rQof where oq = ^ k-g is a frequency chirp. This modifies 

the Bragg resonance condition in the laboratory frame to Aa;„(f) = AniJr + 2k-gt. 

'Note that visibility can be defined through the abihty to fit a sine curve to a given data set. 

Contrast is indicative of coherence and it is possible to have contrast with no visibility, as is discussed 

in [85, 188], 
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Wc compensate this by sweeping A u at a rate a ~ 25.1 MHz/s , determined by 

local g near onr lab in Canberra, Australia [189]. The interferometer phase then 

becomes $ = 2n (k • g - na)T^, as was described in chapter 3. By scanning the 

sweep rate Q , we record interference fringes with a period of l/nT'\ Fit t ing a 

sinusoid to these fringes allows us to determine the central fringe and thus qq 

without varying T. This is because the fringe spacing for our modest interrogation 

t ime of a few ms corresponds a irrationally large shift in the calculated value of 

9-

9.2 Gravimetry with a BEC 

Figure 9.1: Interference fringes from a BEC-based gravinieter with n = T = 3nis. Wc 

observe a visibility of (83 ± 6)%. The sohd line is a least-squares sinusoidal fit to the data, 

allowing us to determine Qq (as in all fringe sets in this chapter). Above: absoriJtion images 

from the interferometer showing an oscillation between tlie two output ports. 

Figure 9.1 shows gravinieter fringes for r; = I , T — 3ms. We observe a 

high visibility of (83 ± 6)%. Increasing T generally reduces the visibility, and 
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Figure 9.2: LMT fringes from our BEC gravimetcr. (a) Fringes for our highest precision 
configuration of n = 3. T = 4ms. (b) Atom number in each run of (a). Despite a 300% 
variation in density, we observe no effect on our fringes or mcasurenaent of g. 

more rapidly for larger n. Wc speculate that wavefront aberrations in the Bragg 
laser beams contribute to this. Aberrations cause different atomic trajectories 
to experience different phase shifts, as has been discusscd in [88, 89]. These 
different phase shifts arc averaged through detection, causing a reduction in fringe 
visibility. This effect will be exacerbated for larger n and T, as each atomic 
trajectory samples more of the transverse phase profile of the beam. We suspect 
significant aberrations in the current apparatus due to the close proximity of the 
Bragg beams to our magnetic trapping coils. This can result in diffraction due to 
the coil edge. We suspect that with closer to ideal optical wavefronts. visibility 
would scale more weakly with n and T. Chapter 10 elaborates on this effect 
further, and includes a simple model. 

Even with the reduction in visibility, we are able to improve our sensitivity 
by a factor of 5 from the n == 1 interferometer by using third-order Bragg LMT 
beamsplitters. We achieve a mid-fringe sensitivity of A$/<I> = 5 x IQ-^Hz"^/^ in 
this way. The corresponding fringes are given in figure 9.2(a). These da ta rep-
resent 16 minutes of acquisition time. We can determine gravity from qq to be 
g ^ 9.7859(2) ms"2, where the uncertainty of the fitted value for qq determines 
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the uncertainty in g. In [189], g is measured to be 9.795499189(29) nis-2, approx-

imately 11 km from our lab and 150 m higher in elevation. Our value disagrees at 

the 10"2 level. This low accuracy is almost certainly due to the alignment of our 

Bragg beam along g. as when calculating g from oq, we have assumed k • g = A'.̂ . 

We estimate an alignment uncertainty of 3° in the current apparatus, which leads 

to a systematic error in g of up to 0.026 ms'^. Other sources of systematics, such 

as gravitational and magnetic field gradients, rotation of the Earth, and tidal 

forces, arc all at least 3 orders of magnitude smaller than the alignment error 

(see the thesis of T. Barter [190]). Such systematics will be readily dealt with in 

our next generation system currently under development. 

9.3 The Effect of Atomic Interactions 

Figure 9.2(b) shows the atom number for each corresponding point for the fringes 

in (a). Despite a variation of 300% in density, we observe no detrimental effect of 

phase diffusion on the SNR, or our measured value of g at our limit of precision. 

After 12 ms, the momentum width of the cloud is within 1% of its asymptotic 

value, as shown in figure 9.3(a). We can estimate the interaction-induccd phase 

uncertainty for our or a similar device using the following simple model. 

First, we highlight that the many-body state of a BEG following a beamsplit-

ter operation is distributed over states with different relative number [61], This 

is the case whether the BEG is described by a Fock state or a coherent state 

before the beamsplitter. Because each of the different relative number states has 

a different interaction energy, they acquire phase at different rates; leading to the 

phase diffusion phenomenon often cited as a problem for BEG. For an expand-

ing condensate, however, the density decreases in time leading to a reduction in 

the interaction energy. It is worth noting this phase diffusion is utilised in some 

methods for producing squeezed states [69, 72, 73]. 

To estimate the effect of residual mean-field during ballistic expansion we 

therefore proceed as follows with the assumi)tion that the reader is familiar with 

chapter 5. The average interaction energy per particle is given by: 

Ernt = ^{n) ( 9 . 2 ) 

where (n) = A^"^ / 77^(r)d^r is the average density. In the Thomas-Fermi limit 
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tliis gives: 
15UN TT 1 

287r 
(9.3) 

After release from the trap, the Thoiiias-Ferini radii are scaled according to the 
scaling parameters h^{t) [see equation (5.12)]. Recalling equation (5.13): 

oJ. 2 1 fPh 
^ = ^ - (9.4) 
dt^ k Y bj 

For a 50/50 beamsplitter. Em is identical for both interferometer states and 
therefore no systematic phase-shift will occur. However the variance in the num-
ber difference for the two output modes is ~ A^/4 from binomial statistics, giving 
a variance in the density of each mode. As a result the uncertainty in the inter-
action energy is given by:^ 

The relative-phase therefore diffuses at a rate given by d{A^int)/dt = AEint/h, 
giving the overall phase uncertainty at the output of the interferometer: 

By lunnerically solving equations (9.4) and calculating result (9.6) we find 
that for our highest sensitivity configuration, interaction-induced phase diffu-
sion would limit precision to 10"® per shot; well below our current sensitivity. 
Figure 9.3(b) projects this estimate towards state-of-the-art device parameters, 
plotting the phase diffusion-limited sensitivity as a function of T, for 10® con-
densed atoms/s and our t rap parameters. The shaded region represents the phase 
diffusion-limited 

sensitivity for expansion times ranging from êxp — 10 — 40 ms 
from the upper to lower boundaries respectively. The solid curve is the shot-noise 
limited sensitivity, and the solid circle is the value of the current state-of-the-art 
sensitivity for an atomic gravimeter with T = 0.4 s and n = 1 [10]. We find that 
with an appropriate choice of t rap parameters and expansion time, interaction-
induced phase diffusion can be made negligible compared with the shot noise 
limit. This is demonstrated by the inset, which plots the phase diffusion limited 

As the density is halved in each state, note an additional factor of 2 between equation (9.3) and 
equation (9.5). 



§9.4 Bloch Oscillation-Based LMT 143 

10- : (b) 

•10 -5 0 5 10 
FV«Hicncy diffprcncT (kHz) 

6 8 10 12 14 16 18 20 
Expansion time (ms) 

10-' i Shol-noise liniil 
lO-io \ 
10-" 

1 20 JO 60 80 100 to 

5 10 50 100 

Interrogation Time T (ms) 
500 1000 

Figure 9.3: (a) Momen-
tum width of an expand-
ing condensate along k as a 
function of expansion time. 
Solid line is a GPE simu-
lation for our experimental 
parameters. Black squares 
are measured using Bragg 
spectroscopy, (b) Estimated 
phase diffusion limited sensi-
tivity as a function of inter-
rogation time. The shaded 
region represents values for 
a range of expansion times 
ĉxp = 10 - 40 ms from the 

upper to lower boundaries 
respectively. The solid line 
is the shot-noise limit for 
10® atoms. The solid circle 
is indicative of the current 
state-of-the-art for an atomic 
gravimeter with n = 1. In-
set: phase diffusion limited 
sensitivity for T = 100 ms as 
a fimction of the expansion 
time. 

sensitivity for T = 100 ms as a function of the expansion time. Importantly, as T 
increases phase diffusion qtiickly becomes ncghgible compared with the current 
state-of-the-art precision due to the rapid decrease in density. It should also be 
noted that the above result is an upper bound, as it assumes the spatial overlap of 
the interferometer states is essentially zero for the entire interferometer sequence. 
While they are well overlapped, the phase diffusion rate is significantly IOWXT. 

Very recent w^ork by Jamison et al. has comprehensively investigated the 
effects of atom interactions in free-space BEC interferometers, and also coucludcs 
the atomic interactions are "not a roadblock" for high precision measurement 
with BEC inteferometry [64]. 

9.4 Bloch Oscillation-Based L M T 

The phenomenon of Bloch oscillations describes the oscillation in both the mo-
mentum and the position of a particle accelerating in a periodic potential. It 
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was first described by Felix Bloch in 1929 for electrons in solids exposed to an 
external electric field [191], and fnrther discussed by Clarence Zener in 1934 [192], 
They were not observed until 1992 [193, 194] due to the difficulty of measuring 
electron momentum distributions in a crystal. On the other hand, the momen-
tum distribution of atomic ensembles are readily measured, and with the advent 
of laser-cooling and Bose-condensation, atoms travelling in optical lattices pre-
sented an ideal analog for the solid-state system. In fact, Bloch oscillations in 
atomic systems were first measured, and described in detail by Peik et al. in 1997 
[173]. 

Use of Bloch oscillations as an LMT beamsplit ter has been described in detail 
in [79, 185, 186, 195], and we only give a brief review here. A simple picture of 
the process is as follows. Atoms arc adiabatically loaded into an optical lattice 
formed by a standing wave. The atoms are effectively pinned to the potential 
wells of the lattice such that if the lattice is accelerated slowly, they adiabatically 
follow and their momentiun increases. If the acceleration is too fast, the a toms 
cannot follow the potential and remain stationary. The appeal of Bloch-based 
LMT is that it docs not require a quadratic increase in laser power for increasing 
momentum transfer, as is the case for Bragg diffraction. 

We can describe the Bloch beamsplit ter using Bloch states ]n,g), which are 
(periodic) solutions of the Hamiltonian (10.6), where n is now the band index 
and q the quasimomentmn defined modulo 2hk. This range of quasimomerita is 
known as the 1st Brillouin zone. Figure 9.4 shows the energy-band s t ructure of 
the Bloch states. Stationary atoms arc loaded into the 1st band at (or near) zero 
quasimomentum, represented by the blue circle at g — 0. The lattice is acceler-
ated by introducing a frequency-diffcrcncc chirp between the counter-propagating 
lattice beams. This corresponds to an increase in the quasimomentum, as shown. 
When the quasimomentum reaches hk, this corresponds to a Bragg resonance, 
hence the avoided crossing at this point. Provided the acceleration is slow enough 
to be adiabatic, atoms follow the ground state, staying in the first band. In other 
words, they remain relatively stat ionary in the lattice frame undergoing oscilla-
tions in momentum and position space - Bloch oscillations. In the laboratory 
frame, this means the atoms acquire the same final velocity as the lattice.^ The 
adiabatic criterion can be computed from the Landau-Zener transit ion probabil-
ity [185]: 

ttV^ 
^ « 

To within an integer multiple of 2hk, as the change in nionientum is quantised by the exchange 
of lattice photons. 
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Figure 9.4: Bloch oscillations in the band structure of an optical latticc. After Clade [186]. 

where V„ is the band-gap energy at the avoided crossing in the n th band, and 

a i the latticc acceleration. If this condition is not met, atoms can undergo 

diabatic transitions to higher bands, increasing their energy in the lattice frame 

or equivalently remaining stationary in the laboratory frame. It is this feature 

which enables operation of a beamsplitter as follows. 

A Bragg beamsplitter pulse is first applied, splitting the cloud into two mo-

mentum components. The Bloch lattice is then adiabatically ramped on stich 

that one of these components has approximately zero quasimomcntum. The 

other state is therefore loaded into a higher baud. Because the avoided-crossings 

at higher bands correspond to higher-order Bragg resonances, the band-gaj) en-

ergy is smaller due to a weaker coupling for a given laser power (i.e. latticc 

depth). Thus it can be made the case that criterion (9.7) is well satisfied for 

only the stationary component, allowing selective acceleration of just that com-

ponent. This increases the relative momentum between the two states, resulting 

in L M T beamsplitting. We have found that a 4hk initial Bragg beamsplitter is 

sufficient to accelerate just one of the momentum states. In this way, atoms can 

be accelerated and decelerated in order to close the atom interferometer. 

We have achieved a fringe visibility of (24 ± 4 ) % in a Bloch-based LMT inter-

ferometer; the highest yet observed to the best of our knowledge. The full pulse 

sequence is highlighted in figure 9.5(a), as well as the space-time diagram. After 



146 Graviinctry with a Bosc-Einstchi Condensate 

F i g u r e 9.5: Bloch 
oscillations-based LMT 
gravinietcr. (a) The 
intensity of the pulse 
sequence used for this 
interferometer, and the 
resulting space-time di-
agram. Using only the 
Gaussian pulses results 
in a standard Mach-
Zehnder interferometer, 
(b) Fringes from a LMT 
gravimeter using Bloch 
beamsplitters. A visibility 
of 24% is observed for 
T = 2.5 ms. and effective 
order n = 2.42 calculated 
from the space-time area. 
This is in agreement with 
the fitted fringe period 
of (70 ± 5)kHz/s. (c) 
Absorption images show-
ing the two arms of the 
interferometer after each 
pulse. The scale bar in (c) 
represents 300/im. 
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an initial 4hk Bragg beamsplitter, we adiabatically load atoms into a lattice of 
depth ~ lOhcUr in 100/xs. We then chirp Ao; over 200 ^s, sweeping q throtigh one 
Brillouin zone. The momentum of one arm is thus increased by 2hk in the lab 
frame. This process is reversed to decelerate this arm before a n Bragg-pulse, af-
ter which the other arm is subjected to the same procedure. Wc use T = 2.5 nis, 
and our pulse sequence gives the interferometer a space-time area with an ef-
fective order of n = 2.42, calculatcd from a diagram such as tha t in (a). The 
resulting fringes are shown in (b), and the fitted fringe period of (70 it 5) kHz/s 
is in agreement with the effective order. 

Wc find that if either the lattice depth is increased beyond lO/kj^, or our 
acceleration time is increased to impart a larger momentum, the interferometer 
output converges to P = 0.5. In fact, even if we adiabatically load and unload 
the lattice without acceleration, wc observe this cffcct. This is suggestive tha t 
the causc is related to the AC-stark shift, as the accelerated atoms experience a 
different shift to the unacceleratcd atoms. Ideally this would be common to both 
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intcrfcronictcr anus, as cacli spends an equal time in each latticc band. However, 
the inhoniogcneous intensity of the laser beam leads to spatial phase shifts, which 
do not canccl in cach half of the interferometer due to the expansion of the cloud. 
The result is a reduction in the contrast during detection [195]. Indeed, in work 
by Clade et al. [186] and IMiiller et al. [79], it was necessary to use symmetric 
acceleration of each arm in opposite directions in order to observe interference. 
Although we have observed significant interference without using symmetric ac-
celeration, our space-time area is limited. We therefore expect that contrast 
could be increased by using larger laser beams at higher power, or a narrower 
momentum width source such as an atom-laser, or a BEC whose interactions arc 
switched to zero upon release from the t rap [125]. Finally, temporal intensity 
fluctuations can lead to randomised phase noise in the fringes, again due to the 
Stark shift, but should not rediice fringe contrast. This could be alleviated by 
intensity stabilising the laser, which we plan to do in the future. 

9.5 Chapter Conclusions 
We have presented results from the first BEC-based Mach-Zehnder gravimeter. 
We observe interference fringes with a high visibility, and are able to increase 
our sensitivity to gravity by imparting larger momentum to the atoms in the 
beamsplitting process. We have also investigated the use of Bloch oscillations 
as an LMT technique with BECs, again observing a comparatively high fringe 
visibility. Using a mean-field model, we demonstrated that interaction induced 
phase diffusion is negligible in an interferometric measurement with freely-falling, 
coherent atomic samples. In the next chai)ter, we discuss the effects of momentum 
width in inertial sensors, and demonstrate that the very narrow momentum width 
of a BEC, combined with LMT beamsplitters, should lead to sensitivity beyond 
current state-of-the-art. 
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Chapter 10 

The Effects of Momentum Width 
in Inertial Sensors 

Work in this chapter has been peer-reviewed and published in: 

S. S. Szigeti, J. E. Debs, J. J. Hope, N. P. Robins, and J. D. Close. Why 
momentum width matters for atom interferometry with Bragg pulses. New J. 
Phys. 14, 023009 (2012). [78] 

hi the introduction, and several times throughout this thesis, the importance 
of momentum width lias been highlighted, hi this chapter, we give a detailed dis-
cussion of the effects of niomentum width in atom interferometer-based inertial 
sensors. It is in this sense that Bose-condenscd sources appear most promising. 
The discussion is divided into two sections: momentum width along the beam-
splitter laser, and momentum width transverse to the beamsplitter laser. With 
Bragg diffraction being an attractive option for LMT beamsplitting, we begin by 
highlighting results from our recent and comprehensive study on the effects of 
niomentum width in Bragg atom interferometers. We then turn to the question of 
transverse momentum width, and present experimental results on the comparison 
of a thermal atomic source and a BEC source in our gravimeter: finding that the 
BEC produces fringes with superior contrast. Using straightforward arguments, 
we conclude that wavefront errors of the Bragg laser are the most likely cause 
of the reduced contrast for a thermal source. Finally, we discuss in some detail 
the systematic effects of the Coriolis force, which can also benefit from narrower 
niomentum width sources. 
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10.1 The Effect of Momentum Width Along k in Bragg 

Interferometers 

Work in this scctioii was done in dose collaboration with S. Szigeti. The ini-
tial theoretical analysis and calculations were perform by the author, who also 
provided ongoing input to the detailed numerical calculations performed by S. 
Szigeti. A comprehensive article has been published in New Journal of Physics 
[78]. Here, we give a brief description of the work and highlight some key results. 

10.1.1 Theoretical Description of Bragg Diffraction 

As experimentalists, we have exquisite control of our laser frequencies and it is 
useful to describe Bragg diffraction in the atom frame, using figure 8.3. However, 
for a robust theoretical description which accoimts for the momentum width of 
the atomic source, it is far more convenient to work in the lattice frame. Note that 
although the lattice and lab frames were equivalent in the first experiment (s) on 
Bragg diffraction using standing waves, this is not necessarily the case in general. 
In any case, equation (8.7) defines the resonance condition for Bragg dift'raction 
in the lattice frame, as a condition on the initial momentum of the atom along 
the lattice. As a reminder, = nhk for nth order diffraction. We now develop 
the theoretical framework that is used for investigating the cflFect of momentum 
width on Bragg diffraction. 

In what follows, it is assumed the reader is familiar with concepts in chapter 
2 of this thesis. Consider a two-level atom, with ground and excited electronic 
states \g) and |e) respectively, moving in a one-dimensional optical standing wave 
given by 2Eo cos(/c2) cos(c<;^). This field is detuned from atomic resonance at UQ 
by A = a; - ojo- Wc can describe the state of the system by the Hamiltonian 
written in a frame rotating at the laser frequency: 

' + M2cos(A:£)(|e)(^^| + |9)(e|) (10.1) 

Working in the position basis,^ we can describe this system by the state vector: 

mz,t))=g{z,t)\g)+e{zj)\e) (10.2) 

where g{z,t) and e{z,t) are the ground and excited state ccntre-of-mass position 

'In thi.s way, the ceiitre-of-mass momentum dependence of the system is built into the ground and 
and excited state wavefunctions. 
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wavcfunctions rcspcctivcly. Feeding this into the Schr6dinger equation gives the 
coupled (Ufferential equations for the eentrc-of-niass wavcfinictions: 

= + M]eos(A:.)e(^,0 (10.3) 

..de{z,t) h^ d^e(z,t) 
= - + hncos{kz)giz,t) (10.4) 

We operate in the regime that spontaneous emission is negligible, such that we 
may adiabatically eliminate the excitcd state using e{z,t) « 0. Combined with 
the hiitial condition g{z,0) = 1, this hnplies e{z,t) « 0 and therefore = 0. 
This gives the equation of motion for g{z,t): 

^ + + co42kz)]g{z, t) (10.5) 

where as a reminder = is the two-photon Rabi frequency, and 0 < f{t) < 1 
has been included to allow for a time-dependent coupling. The 1 in the square 
brackets gives a term that represents the mean AC Stark shift. It is possi-
ble to subtract this term even for non-constant f{t). This is done by choosing 
the unitary transformation g{z,t) f and substituting this into 
equation (10.5). We then achieve the desired result: 

As the Hamiltonian is periodic, we expand the wavefunction as a F'ourier scries 
of plane waves 

CX) 
5 ( 2 , 0 = (10.7) 

n= —oo 

where we introduce a momcntmn offset K, the utility of which be discussed shortly. 

^Technically we use Bloch's theorem and expand in plane waves with a the lattice periodicity of 
2k. Then when considering both odd and even initial conditions for n, the result is the set of equations 
(10.9). We therefore take the shortcut of expanding in plane waves of periodicity k. 
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Substituting tliis expansion into (10.7) and omitting the argument of c„ gives: 

ih y = y {nk + Kfcne 
^ 2 m. ^ 

. \ 2 „ -i{nk+K)z 

+ ^ f(t) Cn + 

= E 
-^{nk + KfCn + + 

2 m 2 

(10.8) 

This equahty must hold for each term in the sum, giving a set of ODEs for the 

plane wave component amplitudes: 

Cn = - t -UJr{n + nfcn + % / ( 0 ( C n + 2 + C „ - 2 (10.9) 

where R = n/k. At this point, it would be possible to consider Raman-Nath 

diffraction (multiple orders populated - see figure 10.1), defined as the regime 

where the kinetic term can be neglected such that Q.e/2 ^ n'̂ ujr (this assumes 

that K is small compared to nk) [114]. This is equivalently a statement of the 

energy-time uncertainty relation for the interaction time. Similarly, the Bragg 

regime can be defined as a small coupling energy compared with the closest 

momentum resonance for a given diffraction order 

fie/2 4(n - 1)0;^. JIO.IO) 

It is possible to solve the ODEs of (10.9) analytically, for constant f{t) (or 

more precisely, a step function), by truncating the plane wave expansion in equa-

tion (10.7) at ±n, provided we satisfy condition (10.10). Solutions for nih order 

diffraction are then obtained by adiabatically eliminating the intermediate mo-

mentum states between —n and n. This has been done in [175] for k = 0, and 

was extended by Szigeti et al. to k 0 in [78]. The solutions are: 

|c„(f)l2 = S s i n 2 

\ 
[10.11) 

/ 

^For n = 1 this is slightly modified, with {n - 1) replaced by (n + 1). This is because the closest 
adjacent state is n + 2, not n ~ 2. 
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and 

(10.12) 

where = + IGn^K^a;^, and we have introduced the nth-order Rab i fre-

quency: 

where it is assumed that k <C hk. This resuh, is identical to that derived in 

chapter 2 for the two-level atom, with the effective detuning given by Ag = inRuJr-

Indeed, in the Bragg regime, the system behaves as a two-level system with an 

effective wave vector k, = 2nk] again demonstrating the factor of n enhanced 

phase-shift in an inertial sensor. Notice also that k behaves like a detuning from 

the resonant momentum in the lattice frame. This is not surprising as in the 

atom's frame k is equivalent to a Doppler shift of the lattice laser frequencies off 

resonance. Hence, one can think of k as a parameter that can be used to track 

the width of the Bragg resonance in momentum space. Furthermore, the width 

is also n dependent with a F W H M given by A k = Thus, for a given 

^ n the Bragg resonance width decreases with n. This suggests that a narrower 

momentmn width is preferable, at least in the case of a boimd two-photon Rabi 

frequency. 

10.1.2 T h e q u a s i -B r agg R e g i m e 

Equat ion (10.10) equivalently places an upper limit on the nth-order Rabi fre-

quency: 
g /^ 2 Nn 

^^n < TT TTTi?'̂ '- ^ ^^n < ISc^r , « > 2 (10.14) 
(n - 1)!] 

Al though Qn has experimentally reasonable values for n < 8, the right-hand-

side of (10.14) drops rapidly for n > 8 due to the factorial in the denominator. 

This implies mircalistically long 7r-pulse times for the strict Bragg regime. For 

example, l^io ^ 0.20;^ gives r̂ r » 1 ms. In previous work, Miiller et al. showed 

that one can minimise losses to undesired momentum states by using Gaussian 

pulse envelopes [175], i.e. f(t) = exi)(-f^/2r^). This enables diffraction in the 

quasi-Bragg regime, which does not satisfy the strict limits imposed by equation 

(10.10), but allows the use of shorter i)ulsc times. 

Figure 10.1 show cxani[)les of exi)erimental absorption images for Ranian-

Nath diffraction on the left, low loss Bragg diffraction in the centre (n = 4), 
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Figure 10.1: Ramaii-Nath diffraction vs. Bragg diffraction. Left: Raman-Nath diffraction 

using a (short) 10 ̂ s pulse with relatively high intensity. Centre: 4th order diffraction using 

a Gaussian pulse with T = 100 ̂ IS. Right: 5th order diffraction using a Gaussian pulse with 

r = 100 ̂ s, which is substantially more lossy. The Bragg pulses are k/2 pulses. 

and lossy Bragg diffraction on the right (n = 5). Our goal is to investigate the 

effect of momentum width on the efficiency of Bragg diffraction. Notice that for 

lOhk diffraction, the loss is more significant. As we shall see, this is the result of 

insufficient laser intensity. 

10.1.3 Fidelity of a TT Pulse 

Assuming that the initial cloud has a momentum distribution centred at 

the nth order momentum resonance p = -nhk, its state can be written as: 

lipi) = I i>{K)\{-n + K)hk)dR (10.15) 

where is assumed to be real and is normalised to 1. Ideally, nth order 

diffraction would result in the entire distribution centred at p = -nhk to be 

mapped onto the same distribution centred at p = +nhk- i.e. the ideal state is: 

li^ideal) = tpiK)\{n + R)hk)dK ; i o . i 6 ) 
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However, there will in general be population of other momentum states, and thus 

the final state will have the form: 

= f Cm(K,//)|(m + R)hk)dR (10.17) 
m 

where f/ is a time well after the Bragg pulse has been extinguished, and Cminj) 

are the expansion coefficients in (10.7) determined by solving the set of ODEs 

at different values of R. Tfie above expression is valid by virtue of the result 

at the end of chapter 2 where it was concluded that solutions for individual 

momentum eigenstates can be determined, and then sunnned over the momentum 

distribution. 

We may characterise the efficiency of a TT pulse through the fidelity: 

F . = mi'^deal)\^ (lO-fS) 

which measures the projection of the state we get onto the state we want. Taking 

the momentum distribution to be a normalised Gaussian of momentimi width a, 

it can be shown that the fidelity for nth order difl'raction is given by [78]: 

FA^e,r)< J (10.19) 

where r is the 1-sigma width of a Gaussian coupling pulse, and the upper bound 

occurs if the relative phase between different momentum components is zero. In 

what follows we assume equality for the above expression. therefore represents 

the total efficicncy of atoms transferred to a momentum distribution centred 

around p = nhk, and therefore is our "mirror efficicncy." 

10.1.4 Results for a Bragg Mirror 

Unbound Two-Photon Rabi Frequency 

By performing a numerical optimisation of F̂ r over He and r, we can determine 

the optimised fidelities for a given n and cr. Details of the numerical optimisation 

can be found in our paper [78]. The results are presented in figure 10.2 for n in 

the range ( 1-25 ) and a in the range (0.01 - l)hk. The first feature of these 

data is that as the momentum width increases for a given n, the mirror efficiency 

monotonically decreases. This can be understood by realising that a l)roader 

momentum distribution has more atoms at a larger detuning from resonance (for 
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F igu re 10.2: Optimised fidelity for a Bragg mirror pulse as a function of the momentimi width 

for different n. Inset: Curves for larger values of n. Points represent numerically simulated 

results, joined by lines to guide the eye. From [78]. 

fixed atom number). Although in the hmit of a two-level system, this could 

be compensated for by increasing the effective Rabi frequency to broaden the 

transition, optimised diffraction in the quasi-Bragg regime inherently involves 

multiple levels, and increasing the Rabi frequency further reduces the fidelity 

due to loss to other momentum states. 

Perhaps more interestingly, for a given momentum width the maximum fi-

delity varies little with n for n > 2.̂  However, in order to reach the optimum 

fidelities our simulations show that the required two-photon Rabi frequency scales 

as Qe oc n^, as given in figure 10.3. This also agrees with the scaling of equa-

tion (10.13) in the limit of large n, and essentially highlights that the optimum 

occurs for a constant nth-order Rabi frequency. Furthermore, it highlights that 

the quasi-Bragg regime occurs when the potential energy term (a Qg) is on the 

order of the kinetic energy term (oc n^) in the Hamiltonian. 

1st order diffraction is subtly different from all other orders in that there are no momentum states 

between the initial and final momentum states. 
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Figure 10.3: Optimised Rabi frcquciicy (left) and Gaussian pulse duration (right) as a function 
of order for a Bragg mirror pulse. Points repre.seiit numerically simulated results, joined by 
lines to guide tlie eye. From [78]. 

The analytic solution (10.11) can give insight into this result; namely that 
al though the transition width decreases with this can be coini)cnsated for by 
an increase in the n th order Rabi frequency, which broadens the transition. This 
may at first seem to contradict the earlier s ta tement tha t one cannot increase the 
Rabi frequency indefinitely due to loss to other momcntinn states. While this 
remains true, higher order diffraction can tolerate a large Rabi frequency, as the 
adjacent momentum states are energetically further scj^arated for larger n due to 
the quadrat ic disi)ersion relation. This is also highlighted by condition (10.10). 

Thus, assuming tha t we have ample laser power available, the best mirror 
efficiency is barely affected by increasing n. Asa final point of connnent, the clear 
points of deviation from the general trend of the curve in figure 10.2 correspond 
to momentum widths where the system begins to optimise in a slightly different 
regime which involves more Raman-Nath-like diffraction. This is because the 
cloud's momentum width becomes large enough that off-resonant transitions can 
actually lead to a higher population in the target s ta te than more Bragg-like 
transitions. We have verified this picture by observing the occupation in other 
momentum states, which inidergoes a distinct rise around these points. It is also 
apparent in the oi)timised pulse times given in figure 10.3, where for a given n 
(e.g. n = 2) there is a sudden droj) in the pulse time with increasing momentum 
width. 

We have comi)ared these theoretical results to several state-of-the-art systems 
in the literature. In work by Miiller et al. [85], mirror efficiencies between 85 
90% were reported for Bragg diffraction with n < 9. Their soiu'ce momentum 
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width was velocity sclcctcd to a ~ O.lShk. This is consistent with our prediction 

of F^ ~ 90%, suggesting that they were operating close to the fundament limit 

imposed by our semi-classical theory. 

In rccent work by Chiow et ai, n = 3 reflections of a BEC were performed with 

94% efficiency [87]. From [196], we estimate the momentum width of their BEC 

to be a ~ 0.i)5hk\ which gives an upper bound on their fidelity of 95%. Again 

they appear to be operating close to the fundamental limit. This conclusion is 

in contrast to statements made by the authors that their efficiency could be im-

proved by reducing technical uncertainties. The result is particularly important 

in this context, as Choiw et al. have used 17 successive Bragg pulses in order to 

produce a 102M' beamsplitter. This of course causes a large loss in atom number 

of 1 - (0.94)^^ = 75%. As our results imply that any improvements to the mirror 

efficiency would only be possible by using a narrower momentum width source, 

it would seem that Bose-condensed source arc the only viable option for such 

technic}ues; particularly with proposals demanding 1000/i/i: beamsplitters [28]. 

Bound Two-Photon Rabi Frequency 

The above results assume the two-photon Rabi frequency is unbounded. In prac-

tice this is of coursc not so. The laser intensity is limited via power and beam 

size considerations, while the one-photon detuning is limited by our chosen toler-

ance for spontaneous emission. In other words, once a tolerance to spontaneous 

emission is chosen, this limits the two-photon Rabi frequency for a given laser 

intensity. Figure 10.4(a) plots the atom loss due to spontaneous emission as a 

function of laser intensity for the optimised pulse parameters and o = O.lhk, 

over a range of orders. A loss of over 100% implies the atoms each spontaneously 

scatter more than 1 photon on average. The blue box gives an example of how 

to use the figure; it highlights the orders over which the optimised fidelity can 

be theoretically obtained. In this case, we assume a loss of up to 1% can be tol-

erated, and that the maximum Bragg-Iaser intensity is IW/cm^ . This intensity 

is representative of a state-of-the-art Titanium-Sapphire laser used in reference 

[85]. By inspection, optimised efficiency can be obtained for up to n ~ 7 in this 

example, although we did not explicitly calculate the curve for this order. If we 

were to tolerate slightly more loss, say 3%, then n = 10 could be optimised at 

this intensity. 

Bounding the Rabi frequency therefore has strong implications for achieving 

optimum mirror fidelities. In figure 10.4(b), we plot the calculated fidehties as a 



§10.1 The Effcct of Momentum Width Along k m Bragg Interferometers 159 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Momentum width, ct(units of hk) 

Figure 10.4: Bragg mirror 
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Points are numerically simu-
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to guide the eye. From [78]. 

function of momentum width ( as in figure 10.2), now assuming that < 20ujj-. 

Al though this is a relatively modest Rab i frequency, we use it for illustrative 

purposes as the simulations arc much simpler in this case. We find that for 

n < 4, the optimised fidelities from figure 10.2 arc achieved as oi)t imum Rabi 

frequency is always less that 200;̂ - For n > 4, the opt inuun fidelity cannot be 

readied, and falls off sharply with n for a given momentum width. Decreasing 

the momentum width in this regime improves the fidelity for a given n, again 

suggestive that Bose-condensed sources could be advantageous when considering 

the effects of finite laser power and minimising spontaneous emission. This result 

is also captured by the effective two-level model discussed earlier [see equations 

(10.11) and (10.12) . 

In figure 10.5, we present experimental data which (inalitatively verifies the 



160 The EfFccts of Momentum Width in Inertia! Sensors 

200 fim 
8hk 

C D 6hk 

o 4hk O 2hk 

e 8 o C ) mk 
n = 1 n = 2 n = 3 n = 4 

Figure 10.5: Bragg diffraction for increasing order with a near constant nth order Rabi 
frequency. A 100 ^s Gaussian Bragg pulse is apphcd for each order. The intensity of the 
Bragg laser is increased in order to maximise the number of diffracted atoms. We see that 
the diffracted cloud has a decreasing momentum width in the direction of the Bragg beam for 
increasing order. 

effect of a bound two-photon Rabi frequency. 100/US Gaussian Bragg pulses are 
applied to a BEG after allowing for ballistic expansion 12 ms). Absorption 
images arc taken for Bragg orders ranging over n = 1 — 4. We increase the 
laser intensity for increasing order, in order to maximise the rmrnbcr of diffracted 
atoms. In the sense limit of two-level system, this is equivalent to maintaining a 
constant nth order Rabi frequency. Note that there is no discernible population 
of other momentum states, indication highly Bragg-like diffraction. There is a 
clear reduction in the momentum width (along the Bragg laser beam) of the 
diffracted cloud, as well as the number of diffracted atoms, for increasing order, 
in qualitative agreement with the theoretical results. 

10.1.5 Mach-Zehnder Interferometer: Comparison to Experiment 

In the paper by Szigcti et al, wc also investigate the effects of momentum width 
for a full Mach-Zehnder -njl - tx - 7r/2 pulse sequence. Specifically, we used 
the SNR of the interferometer (assuming a shot-noise limit) as a figure of merit, 
and looked again in the regimes of bound, and unbounded Rabi frequency. The 
optimised mirror pulse values were used for the mirror in the pulse-sequence, and 
the optimisation was performed over the beamsplitter pidse parameters. The 
results generally reflect those for the mirror analysis, and we therefore will not 
go into detail here. The interested reader should see the article [78]. 
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Figure 10.6: Comparison of Bragg-tlieory and experimental gravimeter fringes. The experi-
mental set is identical to that of figure 9.1 with n = 1. T = 3 ms. The solid line is a sinusoidal 
fit to the experimental data. The dashed line shows theoretical fringes calculated from a fully 
optimised Mach-Zehnder pulse sequence, for a momentum width of (t = 0.14ftA-. 

There is however another comparison we can make with experiment, not in-
cluded in the published article. W'e performed an optimisation routine on pa-
rameters for our experimental gravimeter fringes in figure 9.1. As a reminder 
these data correspond to n = 1, T = 3nis, and the momentum width of our 
BEC was a — 0.14/iA:. Theoretical fringes were calculated for the optimised pulse 
sequence, and overlaid on experimental data in figure 10.6 as the dashed trace. 
The figure is otherwise identical to figure 9.1. Our experimental contrast was 
(83 ± 6)%. The theoretical contrast is 94%. Thus we find that our experiment 
results are consistent with our Bragg-theory. and within the predicted funda-
mental limit by as little as 5%. Note that the experimental data was taken long 
before our theoretical analysis of Bragg interferometers, and our pulses were not 
optimised according to the theory. Small wavefront errors could also account for 
the discrepancy. In the next section, we will discuss wavefront errors in more 
detail. 



162 The Effccts of Momentum Width hi Incrtml Sensors 

10.2 The Effect of Momentum Width Transverse to k 

Mentioned in the introdnction, and allnded to several times throughout this the-
sis, the transverse nionientuin width of an atomic source has imphcat ions for 
systematic effects and fringe contrast in an inertial sensor. In this scction, we 
give a brief discussion of two sources of uncertainty in a gravimeter which scale 
with the transverse momentum width of the atomic source: wavefront errors and 
the Coriolis force. 

10.2.1 Wavefront Errors 

In the discussion of light-pulse beamsplit ters throughout this thesis, we have 
assumed the beamsplitter laser is an ideal plane wave. In practice this is not so. 
Firstly, a laser beam is well described by Gaussian optics, and thus the wavefronts 
arc curved with a radius of curvature that is a function of the distance from the 
beam waist. Secondly, there will always be some level of wavefront distortion 
such as aberrations due to e.g. dust particles in the beam and imperfect optics. 
These will affect the shape of the wavefronts in non-trivial ways, in both the 
near- and far-field. 

Because any atomic source will have some transverse momentum width, the 
atoms in (say) a gravimeter will not only fall downward under gravity, but will 
also have a range of transverse velocities. There will therefore be a range of 
atomic trajectories through the beam, as shown schematically in figure 10.7. 
The black lines represent atomic trajectories with different horizontal velocities, 
originating at the source cloud (shown in blue). The red-dashed curvcs represent 
distorted wavefronts, and the dotted grey lines the vertical location of the i th 
interferometer pulse.^ As atoms travel transversely (as well as downward) in the 
beam, the sampled phase at each interferometer pulse will differ from the ideal 
plane wave phase of keZ in a t rajectory-dependent way. Thus, in addition to the 
usual phase shift due to gravity, there will be a t ra jectory-dependent phase shift 
of: 

^>a6(x(0) = (pabiXl) - 2(/)„b(x2) + (PabiX's) (10.20) 

where Xi is the horizontal position of an a tom at the i i h pulse and (p^b the laser 
phase as a function of x. Therefore, at the ou tput of the interferometer, there 
will be a non-trivial spread in phase-shift across the atomic ensemble. Because 

Although the three wavefronts appear to be identical in the vertical direction, this is done for 
sniiplicity. In general this is not the case as propagation of aberrations will also result in a changing 
wavefront profile. 
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Figure 10.7: Schcmatic representation of tiic eiTects of wavcfront distortion. Black lines 
represent atomic trajectories through the laser beam with different horizontal velocity compo-
nents. Red-dashed lines are distorted wavefronts of the beamsplitter laser beam. As a result 
of different horizontal velocities, each trajectory samples a different phase at each light-piilse 
(represented by the dotted horizontal lines). Note the figure is not to scale. 

one typically averages spatially over the ensemble during detection of the atoms, 
this phase information is averaged over, leading to a reduction in the observed 
fringe contrast, as well as a possible systematic phase shift in the fringes. The 
systematic phase shift has been discussed at length in several articles [9, 88, 89]. 

A Thermal vs. a Bose -Condensed Source 

We have performed a direct experimental comi)arison of an ultra-cold thermal 
cloud and a BEC in our atomic gravimeter. To produce the thermal cloud, we 
cease evaporation in our optical t rap just above the critical temperature for con-
densation. In this way, we produce an ensemble at a temperature of ~ 100 nA'. 
Figure 10.8 gives a comparison of fringes for the BEC and thermal source where 
we make every effort to ensure that the system is otherwise identical. In partic-
ular, we use an identical velocity-selection pulse for each sequence. The fringe 
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Figure 10.8: Experimental comparison of thermal and Bose-condensed atomic sources. We 

use n = 1, r = 3ms gravimeter parameters. Both have an identical vertical momentum width, 

but differ in their transverse momentum width. A significant improvement in contrast from 

to (58 ± 4)% to (85 ± 11)% is seen for the BEC. with all other experimental parameters kept 

constant. 

data sets were taken consecutively. The condensed sourcc shows an improved 

contrast compared to the thermal souce, with an increase from (58 ± 4)% to 

(85 ± 11)%. Note that this contrast agrees with the fundamental l imit within 

experimental uncertainty. At 100 nK the thermal cloud has a factor of 3 larger 

transverse momentum width than the condensate. 

Following [89], we can estimate the effect of local wavefront errors by Taylor 

expanding the wavefront curvature to second order; i.e. we estimate the the local 

wavefront curvature as parabolic: 

<Pab{x) = Kx^ ; i o . 2 i ) 

where K characterises the phase curvature. Assuming a Gaussian moment imi 

distribution with a velocity variance of cr ,̂ then: 

and therefore, substitution into equation (10.20) gives: 

(10.22) 

(10.23) 

for the full pulse sequence, where R is the radius of curvature for a parabola. The 
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observed reduction in contrast to 55% requires a phase variation across the atomic 
ensemble on the order of n/3. For our 100 nK sample (for which ap = 0.52M') with 
n = 1 and T = 3 ms this gives H ~ 1.3 mm. Such aberrations could potentially 
be caused by imperfections in the glass cell wall, situated only 10 mm away from 
the atomic ensemble. The Bosc-condensed sourcc has over a factor of 3 narrower 
momentum width, which reduces the phase variation by more than a factor of 
10. This has a negligible cffect on the contrast, in agreement with the measured 
value of (85 ± 11)%. Thus once again we sec that the narrow momentum width 
of Bose-condensed sources present a practical advantage for inertial sensors. 

10.2.2 Coriolis Effects 

In chapter 3 we highlighted that the phase-shift of a Mach-Zehnder interfer-
ometer is sensitive to rotations if the atomic source has a velocity component 
perpendicular to k. As a reminder, the phase shift due to uniform rotation f t (or 
equivalently the Coriolis force) is to leading order: 

^R = 2ke • (O X v j T ^ (10.24) 

where v^ is the atomic velocity. Thus in a gravimeter, an atomic source with 
transverse momentum width and/or transverse centre-of-mass momentiun will 
also have parasitic rotation induced phase-shifts. These can be divided into 
three classes which are summarised below, and all of which can benefit from the 
use of a Bosc-condcnscd source. 

Systematic Rotational Phase Shift 

When atoms arc released from their trap, be it a magnetic trap, optical trap, or 
a MOT/molasses. any uncertainty in their initial velocity can result in a Sagnac 
phase shift due to a centre-of-mass horizontal velocity component. The size of 
this effect will depend on the uncertainty in initial velocity. For example in [90], 
the authors estimate a I c m / s uncertainty in their horizontal lamich velocity for 
an atomic fountain. This results in an uncertainty in g of A f̂ = 6 x 10"®.g, which 
is a dominant contribution to the accuracy. The authors state that using a BEC 
docs not reduce this systematic shift. Although this true in the fundamental 
sense, i.e. there is no benefit from its narrow momentum width, in practice the 
initial velocity of a condensate is tyj)ically far better controlled than for an atomic 
fountain, which uses an optical molassas to launch the atoms. In particular. 
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condensates (Iropi)ed from an ojjtical t rap liavc a negligible initial velocity due to 

the synnnetric reduction in the t rap intensity. Therefore, use of a BEC will help 

reduce this systematic effcct. 

Distribution-Dependant Rotational Phase Shift 

Assuming tha t the initial centre-of-mass velocity of an atomic source is negligible, 
there is still the possibility of a systematic rotational phase shift due to the 
transverse velocity distribution. This is again related to there being a range 
of horizontal velocity components, cach of which encloses a different area and 
contributes a rotational phase shift. However, because these trajectories are 
averaged over in detection, the total contribution may be reduced. Consider 
the two horizontal velocity distributions in figure 10.9, along with the rotat ional 
phase shift equation (10.24). Notice tha t the phase shift reverses sign with the 
velocity vector. The distribution in (a) is a symmetric Gaussian distribution. In 
other words, the range of atomic trajectories with negative velocities is equal to 
the range with positive velocities. Therefore, the phase contribution from the left 
half of the distribution will exactly cancel that of the right half of the distribution, 
which is represented by the two areas under the CTirve. The distribution in (b) 
however is asymmetric, and the left and right areas do not cancel. 

BEC momentum distributions are highly symmetric; often defined by the 
symmetry of the trap. Thermal distributions from a M O T or molasses, such as 
those from an atomic fountain, are typically less so. Thus, we once again expect 
a BEC to be advantageous. 

Wavepacket Overlap 

Initially, the counter-propagating beams forming the beamspli t ter in a gravimeter 
are (ideally) aligned with the local gravity vector. Once the atoms are released 
and enter free-fall, however, the Ear th continues to rota te taking the beamspli t ter 
laser with it. There will therefore be a small change in the angle between k and 
g at successive beamspli t ter /mirror pulses. The result is tha t the atomic t rajec-
tories do not perfectly overlap at the final beamsplit ter due to momentum being 
transferred at slightly different directions for cach pulse. This is analogous to an 
error in overlapping spatial modes at the final beamspli t ter in an optical interfer-
ometer. and therefore causes a reduction in fringe contrast . The extent to which 
the contrast is reduced depend on the degree of mismatch, as well as the spatial 
extent of the wave-packet; equivalent to its coherence length. Interferometers 
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(a) 

0 Vx 

(b) 

0 Vx 

Figure 10.9: Distribution 

dependent Coriolis phase 

shift, (a) Represents a sym-

metric distribution in the 

horizontal velocity, and (b) 

an asymmetric distribution. 

The red area corresponds 

to a negative rotational 

phase-shift, and the blue 

area a positive phase-shift. 

Therefore, when averaging-

over the distributions the 

phase shifts cancel for (a), 

but not for (b). 

with larger T arc therefore more susceptible in general. 

For thermal interferometers, it is often stated that 'each atom interferes with 

itself,' much like a Young's double slit experiment performed with single photons. 

Each atomic wave-packet is characterised by its thermal de Broglie wavelength, 

which is proportional to l /T^/^. Thus hotter thermal sources will have smaller 

coherence lengths and will suffer more from this effect. A B E C on the other 

hand, with all atoms indistinguishable and in a single mode, has a much larger 

coherence length determined only by its physical size. Therefore a B E C will be 

less susceptible to this effect. 

Very reccnt work by Lan et al. has experimentally investigated this effect in 

detail, and they have used an active tip-tilt mirror to compensate for rotation 

of the Earth; improving their contrast by 350% [90], Their work clearly demon-

strates that a B E C will be less susceptible to this cffect than a thermal source, 

possibly even eliminating the need for a tip-tilt mirror. 
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Chapter 11 

Conclusions and the Future 

This thesis has presented experimental and theoretical research investigating the 
application of Bose-condensed sources to atom interferometer-based inertial sen-
sors. Three key findings are: 

• Contrary to the often held view, atom-atom interactions do not limit the 
applicability of Bose-condensed sources to free-space atom interferometers. 
Our analysis in chapter 9 shows that atom-atom interaction can be made 
negligible for very reasonable experimental parameters. 

• LMT beamsplitters offer a dear path to higher sensitivity, next generation 
sensors, and Bragg diffraction is a particularly attractive LMT technique. 
Our theoretical work in chapter 10 shows that the momentum width of the 
atomic source sets a fundamental limit on the Bragg beamsplitter efficiency: 
the narrower the momentum width, the higher the efficiency. This becomes 
especially important for very large momentum transfer beamsplitters, and 
Bose-condensed sources are the obvious choice in this regime. 

• By comparing an ultra-cold thermal cloud and a BEC in a gravimeter in 
chapter 10, we experimentally show how the transverse momentum width 
of a source has a negative impact on the interferometer signal. Combined 
with several other well known systematic effects due to the Coriolis force, 
the narrow momentum width of a BEC is again highly desirable. 

The next generation of inertial sensors proi)ose very aggressive sensitivities of up 
to 1 part in [27], and have extremely demanding technological requirements. 
The properties of the atomic source used will play a critical role in achieving 
these goals. Some j^roposals require beamsjilitters which transfer up to lOQOhk 
of momentum, and long interrogations times. Eor exam[)le, the group of M. 
Kasevich is currently setting up a drop-tower for 10 m of free-fall, with the goal 
of testing the equivalence principle. Current devices such as that of reference [20] 



170 Conclusions and the Future 

arc already significantly impacted by the nionicntuni width of the atomic sourcc. 
In future devices, the effect of momentum width will clearly play an even more 
crucial role, and Bosc-condensation is the natural progression in attempting to 
produce narrower and brighter sources. 

It is perhaps no longer a question of "will they be useful?" But rather, "when 
will they be useful, and what is the best way forward?" It is in this context that 
the work of chapters 6 and 7 is significant. Our hyperfine-Raman outcoupler 
produces the highest brightness atom-laser of all possible outcoupling techniques 
for magnetically confined BECs. Outcoupling from an optical trap results in a 
near Heisenberg-limitcd beam. Given that atom-lasers naturally have narrower 
(transverse) momentum widths than a BEC, pushing the boundaries of atom-
laser technology seems a logical path forward. BECs are still limited in flux, 
and this is an obvious place for improvement. There is no reason which suggests 
that there is a fundamental limit to the flux of condensed sources, and we arc 
certainly still pursuing the goal of a truly continuous atom-laser following our 
work on pumping mechanisms [161, 162]. Becausc most atom interferometers are 
pulsed devices, this causes a down-sampling of high frequency noise, an effect 
known as the "Dick effect" [160]. Continuous sources would not only have a de-
sirable momentum width, but would also combat the Dick effect. 

Investigations into the application of Bose-condensed sources in inertial sen-
sors should continue, and key areas to focus on in the coming years include: 

The production of short duty cycle, large atom number BEC machines. It 
should be remembered that the SNR only scales with \fN, so these gains will 
need to be significant. Very recent work in our group [184] has indicated that a 
100 fold improvement in laser power is available by moving to frequency-doubled 
fibre sources instead of diode-laser-based systems. These incredibly high power 
photon sources will not only allow the collection and cooling boost needed to 
achieve a high flux, but will also enable very large momentum transfer based on 
our theoretical analysis presented in chapter 10 and reference [78] 

A significant amount of time should be invested in understanding how to 
build BEC- and atom-laser-based rotation sensors. It is not yet clear what kind 
of experimental solution is required to achieve this goal, although it is likely that 
atom-lasers will be more suited to the gyroscope Mach-Zehnder configuration. 

In the ease of differential measurements such as gravity gradiometry, equiv-
alence principle tests, and determination of the fine-structure constant, shot-
noise limited systems arc on the horizon. Intriguing possibilities lie in pursuing 



squeezed states in a BEC for these next generation sensors. 

An obvious next step is to produce a state-of-the-art gravinieter using a BEC, 

with a long interrogation time and LMT beanisphtting, and again compare the 

BEC source to a thermal source in the same system. For example, combining the 

results of this thesis, we can envision a 10® atom/s condensed source being used 

in a 20hk LMT interferometer using our recent IIVV Bragg laser system [184]. 

W i th a momentum width of 0.1 hk (see chapter 5), such a source could achicve a 

fringe contrast of up to 80% (see chapter 10). Wi th demonstrated interrogation 

times of uj) to T — 250 ms [90], such a system could achieve a shot-noise limited 

sensitivity of up to Ag/g ~ We arc making rapid advances on such 

a purpose designed BEC-based gravinieter, which is cTirrently at a 1 part in 10^ 

sensitivity. Such a system has the potential to open up a new field of precision 

sensing using laser-like atomic sources. 
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Appendix A 

Piezo-Locking a Diode Laser 
with Saturated Absorption 
Spectroscopy 

This following articlc is based on work conductcd in 2008 at the Australian Na-
tional University as part of this thesis. Due to its technical nature, its was omitted 
from the main text for reasons of continuity. 

This paper was published in Applied Optics and is made available as an 
electronic reprint with the permission of OSA. The paper can be found at the 
following URL on the OSA website: h t t p : / / a o . o s a . o r g / a b s t r a c t . c f m ? U R I = 
ao-47-28-5163. Systematic or multiple reproduction or distribution to multiple 
locations via electronic or other means is prohibited and is subject to penalties 
under law. 
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We demonstrate modulation-based frequency locking of an external cavity diode laser, utilizing a piezo-
electrically actuated mirror, external to the laser cavity, to create an error signal from saturated absorp-
tion spectroscopy. With this method, a laser stabilized to a rubidium hyperfine transition has a FWHM of 
130 kHz over seconds, making the locked laser suitable for experiments in atomic physics, such as creat-
ing and manipulating Bose-Einstein condensates. This technique combines the advantages of low-am-
phtude modulation, simplicity, performance, and price, factors that are usually considered to be mutually 
exclusive. © 2008 Optical Society of America 

OCIS codes: 020.1335, 020.1475, 020.3320. 

1. I n t r oduc t i on 

Saturated absorption spectroscopy is a ubiquitous 
method of frequency stabilizing laser systems in 
many areas of atomic physics, such as spectroscopy, 
atomic clocks, laser cooling, and Bose-Einstein con-
densation [1], Several methods for obtaining an error 
signal from an atomic transition are in use. These 
generally rely on modulation of either the laser fre-
quency, by varying the laser current or modulation 
with an acousto-optic modulator (AOM), or by mod-
ulating an atomic reference source, and subsequent 
electronic demodulation to produce the error signal 
required for locking [2]. Each of the techniques in 
use has strengths and weaknesses. For example, 
modulating the laser frequency by directly modulat-
ing the current, while simple and inexpensive, suf-
fers because the applied dither is on all of the 
light [3]: the light used for the experiment, as well 
as the light used for locking. One can circumvent this 
weakness by splitting off a portion of the light and 
sending it through an AOM. Modulating the AOM 

0003-6935/08/285163-04$15.00/0 
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will cause a frequency modulation only on the por-
tion of the light that is used for locking. While effec-
tive, the cost of an AOM and its driving electronics 
must be included in eveiy laser that is locked directly 
to an atomic transition, and inherent amplitude 
modulation also creates an offset on the error signal. 
Recently, modulation-free differencing techniques 
have come into use [4-10], whereby an error signal 
is produced by subtracting two frequency or phase 
shifted signals generated from the same atomic refer-
ence source. Modulation-free schemes have the po-
tential advantage, over more traditional methods, 
to do away with the need for lock-in electronics 
and the various modulation apparatus, such as 
AOMs and magnetic coils. However, modulation-free 
schemes can be very sensitive to alignment and vi-
bration. 

While all of the above-mentioned locking techni-
ques work, producing an error signal which allows 
a laser to be locked, AOM modulation is one of the 
most common methods in use, and any alternative 
scheme for locking a laser can be compared with 
it. Through phase modulating a laser beam using 
an external mirror mounted on a piezo-electric trans-
ducer (PZT) [11-14], we have made a robust system 
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for producing the modulation required for locking; an 
approach that results in true zero crossing error sig-
nals, is simpler to implement than AOM locking and 
costs at least an order of magnitude less than AOM 
locking. 

2. Phase Modulation 
It is well known that light can be phase modulated by 
reflecting it off a moving mirror [11-14]. For mono-
chromatic radiation phase modulation is equivalent 
to frequency modulation. This can be seen by consid-
ering monochromatic light with an electric field gi-
ven by £ - £o cos(<y«), where Eg is the amplitude 
and w the frequency of the unmodulated electric 
field, which is normally reflected off a mirror oscillat-
ing with an amplitude A and frequency This will 
result in phase modulation, (2itA/i.)cos{o),„t). If we 
let (5 = 2nA/l, then the resulting phase modulated 
electric field is 

E E^icos(u>t + 5cosu)„t). (1) 

In the limit of small phase modulations the above 
expression reduces to 

3. Technique 
For frequency stabilizing an external cavity diode la-
ser (ECDL) to an atomic transition, we have used the 
configuration of Fig. 1. A small portion of the laser 
light is split off from the main beam going to our ex-
periment. This is phase modulated by a mirror that 
is attached to a PZT (Ml), and then the light is sent 
to a standard saturated absorption spectrometer 
The PZT-mounted mirror can be placed almost any-
where in the setup; however, we recommend posi-
tioning it with normal incidence to the light to 
minimize pointing errors, which can produce some 
degree of amplitude modulation as a result of the 
moving mirror. We emphasize that the grating 
PZT is not involved in phase modulation and that 
the technique is not specific to ECDLs as shown in 
our case. After photodetection, the modulated satu-
rated absorption signal is converted to an error sig-
nal by using a commercial lock-in amplifier (SRS-
510) [15], which demodulates the photodiode signal 
at the PZT drive frequency to produce the error sig-
nal. Typical data are shown in Fig. 2. 

For the work that is reported here, the PZTs used 
are high-voltage (1.000 V) PZTs from Piezomechanik 

£ = £ 0 cosod - - [sin(a) + u)r„)t + sin((« - (i)^)t 

ECOL 

• (2) 

which is the original, unmodulated wave plus two 
small sidebands ±ft)„ away from the unmodulated 
beam and is the same result as obtained by weak fre-
quency modulation. 

If phase modulated light passes through an atomic 
vapor and is then incident upon a photodetector, the 
resulting signal will be due to the mixing of the three 
frequencies, the carrier and the two sidebands 
(o).a) + u)^.ai-w,n)- The detector signal will be a 
superposition of the three beat signals, one between 
the carrier and the upper sideband, one between the 
carrier and the lower sideband, and one between the 
two sidebands. When the detector signal is demodu-
lated at the PZT modulation frequency, it is the com-
bination of the beats between the carrier and the 
sidebands that results in an error signal (other beat 
frequencies are filtered by the lock-in amplifier). If 
the carrier is on resonance, for modulation frequen-
cies much less than the natural atomic line width, 
these beats are of equal strength and cancel, produ-
cing no signal at the modulation frequency, while if 
the carrier moves off resonance, the resulting error 
signal is due to a difference in the strength of the 
sidebands after passing through the atomic vapor 
The result is an error signal after phase sensitive de-
tection at the modulation frequency. The zero cross-
ing of this signal, in principle, requires no additional 
electronic offset and is immune to intensity varia-
tions in the laser or the optical depth of the medium 
and, hence, is a true zero crossing error signal. 

^ Experimenl 

PBS x/4 

VapotCell 

F i g . 1. ( C o l o r o n l i n e ) S c h e m a t i c d i a g r a m o f o n e s e t u p u s e d f o r 

c r e a t i n g e x t e r n a l l y p h a s e m o d u l a t e d l i g h t f o r s a t u r a t e d a b s o r p -

t i o n spec t r o s copy . P B S , p o l a r i z i n g b e a m s p l i t t e r ; /1/4, q u a r t e r - w a v e 

p l a t e ; X/2, h a l f - w a v e p l a t e ; N D , n e u t r a l - d e n s i t y filter; L D , l a s e r 

d i o d e ; M l , M 2 , a n d M 3 , m i r r o r s . F o r t h e v e r s i o n s h o w n , b o t h 

t h e p r o b e a n d t h e p u m p b e a m s a r e m o d u l a t e d . R e m o v i n g t h e 

t o p o f t h e s y s t e m (A/4 a n d M 1 ) a n d m o d u l a t i n g j u s t t h e p r o b e b e a m 

( p l a c i n g t h e e x t e r n a l P Z T o n M 2 ) y i e l d s e r r o r s i g n a l s s i m i l a r t o 

t h o s e p r o d u c e d b y t h e a b o v e c o n f i g u r a t i o n a n d m i n i m i z e s t h e 

a m o u n t o f o p t i c s d e v o t e d t o l o c k i n g . W e h a v e i n c l u d e d a s c h e m a t i c 

o f t h e E C D L t o e m p h a s i z e t h a t t h e g r a t i n g P Z T , s h o w n b e h i n d t h e 

g r a t i n g m o u n t c a n t i l e v e r , i s n o t u s e d t o p r o d u c e p h a s e m o d u l a t e d 

l i g h t . 
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Fig. 2. (Color online) Saturated absorption of the S^Sj = 2 

transition for (lower trace) and the corresponding error 
signal. The transit ions are labeled, F F', and the frequency axis 
is relative to the D2 transition frequency equivalent to 780 24 nm. 
For clarity, the saturated absorption signal's Doppler background 
has been subtracted; it has been offset from zero and multiplied by 
20. 

[16], ring shaped, with an outer diameter of 2.5 cm to 
match the diameter of the mirrors. The PZT is at-
tached to a brass mount, and the mirror is attached 
to the PZT. A thin layer of cyanoacrylate glue is used 
for bonding the mount, PZT, and mirror together. The 
brass mount is designed to fit into a standard mirror 
mount, where it is held in place by a set screw. More 
secure methods, such as putting threads on the brass 
and the mirror mount, may be used. 

It is well documented that piezoelectric materials 
display resonant responses when driven at particu-
lar frequencies [11-14]. These resonances corre-
spond to a maximum conversion of electrical 
energy to mechanical energy, and there has been a 
significant amount of work on characterizing the me-
chanical and piezoelectric properties, including reso-
nant behavior, of PZT-mount systems by directly 
measuring PZT displacement as a function of drive 
frequency by using optical interferometry [11-14]. 
Two identically mounted PZT-mirrors were tested, 
and we found that when the PZT is driven by a stan-
dard function generator with a sine wave of 8 V peak 
to peak, there is sufficient modulation, only at parti-
cular drive frequencies, to create a usefal error signal 
fi-om the saturated absorption system. We estimate 
that for sufficient phase modulation to result in a 
useful error signal the absolute minimum PZT ampli-
tude necessary is of the order of 1-10 A for a typical 
rubidium setup, depending on the feedback band-
width required [17]. Reported mirror displacements 
are of the order of 1-10 A or greater [11-13], which is 
more than sufficient based on our estimate. We 
therefore infer that these fi-equencies are the reso-
nant frequencies of our mount-PZT-mirror system, 
with both identically mounted systems having strong 
resonances near 30 kHz. 

Two ECDLs, one Toptica DL 100 [18] and one built 
in house, are locked by mirror modulation (at 30 kHz) 
using this setup. The error signals are symmetric 

about zero (see Fig. 2), needing no electronic offset 
to achieve this, and are stable over many hours. At 
this point, we wish to clarify our use of the term "true 
zero crossing." The source of an unwEinted offset is 
residual amplitude modulation (AM), and although 
this is common in most modulation-based techni-
ques, the major source of AM when PZT locking is 
used comes ftom possible tilting modes of the piezo 
ciystal (assuming a well-aligned, normally incident 
laser beam on the modulated mirror). This results 
in a translation of the focused spot at the photodetec-
tor, and we estimate an upper limit of this effect to be 
of the order of a few micrometers [19]. This value is 
significantly less than both the photodetector and 
the focused spot size, and hence any AM due to tilt 
is negligible, in agreement with our experimental ob-
servations. Using the PZT-locking technique, lasers 
typically remain locked for long periods, as evidenced 
by the DL 100 readily maintaining a rubidium mag-
neto-optic t rap for the production of Bose-Einstein 
condensates throughout a full day of experi-
ments [20]. 

Although this simple system is sufficient for low-
bandwidth locking, higher modulation frequencies 
are advantageous for actively narrowing the laser 
linewidth. Mechanical resonances of a mount -
PZT-mirror system of the order of 100 kHz have been 
previously measured by using interferometry and 
were attributed to bonding within the mount-PZT 
system [11,13,14], Furthermore, commercially avail-
able PZTs have rated resonance frequencies for un-
loaded samples of the order of 100 kHz [16,21]. 

We have investigated higher resonant frequencies 
of our mount-PZT-mirror system by mounting the 
PZT onto a 5 kg stainless steel cylinder bolted di-
rectly to our optics table. This ensures maximum dis-
placement of the mirror The cylinder is 16.5cm high 
with a diameter of 7.5 cm. A vertical plane is cut into 
the side of the cylinder to accommodate the PZT and 
mirror, which are glued to the mount as before. We 
find that the PZT mounted in this way is responsive 
enough to produce an error signal with the same qua-
lities as discussed for Fig. 2 when driven directly by 
our SRS-510 lock-in amplifier at 100 kHz. We mea-
sure a self-beat signal of our locked home-built laser 
by using a self-heterodyne measurement [22], and we 
calculate the linewidth assuming a convolution of 
two Gaussian line shapes. The beat data are shown 
in Fig. 3. The ECDL is found to have a linewidth of 
126.6 kHz for a 20 ms sweep over 100 averages. The 
data thus represent approximately a 2 s total inte-
gration time. In principle, one can construct a system 
with much higher resonant frequencies, for example, 
by increasing the effective spring constant with a 
thinner layer of mounting glue, or by using a glue 
that has a larger Young's modulus [11,13]. There is 
then room for exploration into excitation of higher-or-
der resonances if one requires ultrahigh modulation 
frequencies. 
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Fig. 3. (Color online) Self-heterodyne beat signal obtained for an 
ECDL locked to the S^Si = 2 — S^Pj.zF = 3 transition using 
an error signal produced by a 100 kHz external PZT drive fre-
quency. The beat signal is measured on an RF spectrum analyzer 
using a 20 ms sweep time averaged over 100 sweeps, and thus re-
presents a 2 s integration time. The linewidth for this integration 
time is calculated from the beat signal to be 126,6 kHz. A video 
bandwidth and resolution bandwidth of 10 kHz are used. 

4. Conclusion 
Phase modulation produced by a PZT-modulated 
mirror has been demonstrated to be a practical meth-
od for locking a diode laser to an atomic transition. It 
results in a laser with linewidth and stability desir-
able for experiments in atomic physics (e.g., for main-
taining magneto-optic traps and probing Bose-
Einstein condensates). Being relatively inexpensive, 
easy to implement, and robust, it yields true zero 
crossing error signals, allowing lasers to be locked 
for many hours at a time. Although demonstrated 
for an external cavity diode laser here, PZT locking 
via saturated absorption can be applied to other laser 
systems as well as other atomic species. 
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